Том 25 № 4 (2021)
ОБЗОРЫ

Острое повреждение почек у детей после кардиохирургических вмешательств

С.А. Сергеев
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени академика Е.Н. Мешалкина» Министерства здравоохранения Российской Федерации, Новосибирск
В.В. Ломиворотов
Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр имени академика Е.Н. Мешалкина» Министерства здравоохранения Российской Федерации, Новосибирск; Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный университет», Новосибирск
Bio

Опубликован 28.12.2021

Ключевые слова

  • врожденный порок сердца,
  • искусственное кровообращение,
  • острое повреждение почек

Как цитировать

Сергеев, С., & Ломиворотов, В. (2021). Острое повреждение почек у детей после кардиохирургических вмешательств. Патология кровообращения и кардиохирургия, 25(4), 11–22. https://doi.org/10.21688/1681-3472-2021-4-11-22

Аннотация

Острое повреждение почек после кардиохирургических вмешательств у детей широко распространено. Применяемые в клинической практике подходы помогли уточнить эпидемиологию, факторы риска и патофизиологию этого состояния. Современные шкалы pRIFLE, AKIN и KDIGO, основанные на изменении уровня сывороточного креатинина и темпа диуреза, позволяют выявлять и ранжировать острое повреждение почек по степени тяжести. Однако стратегии диагностики вышли за рамки одного лишь креатинина и предлагают использовать маркеры повреждения почечной ткани. В настоящее время два из них: липокалин, ассоциированный с желатиназой нейтрофилов, а также тканевой ингибитор металлопротеиназы-2 и белок, связывающий инсулиноподобный фактор роста-7, — могут быть использованы для ранней диагностики.

Предикторами острого повреждения почек после кардиохирургических вмешательств являются ренальные и внепочечные факторы риска, наиболее весомые из которых — ранний детский возраст, длительность искусственного кровообращения, необходимость в искусственной вентиляции легких и инотропной поддержке до оперативного вмешательства. Поддержание должного перфузионного давления во время искусственного кровообращения, а также исключение нефротоксичных препаратов и перегрузки жидкостью снижают риск патологии. Ультрафильтрация и раннее начало заместительной почечной терапии в послеоперационном периоде значимо повышают выживаемость.

Для поиска и отбора литературных источников использовали базы данных PubMed, Scopus и Web of Science.

Цель обзора — анализ имеющихся в литературе данных по острому повреждению почек в детской кардиохирургии. Результаты демонстрируют различия в частоте выявления острого повреждения почек, связанного с кардиохирургическими вмешательствами, и эффективности методов профилактики и лечения данного осложнения. Дальнейшее всестороннее изучение вопроса, создание медицинских электронных баз данных о пациентах, минимизация влияния факторов риска, своевременное предупреждение и лечение осложнений позволят предотвратить патологию и снизить вероятность прогрессирования в более тяжелую стадию.

Поступила в редакцию 12 апреля 2021 г. Исправлена 24 июня 2021 г. Принята к печати 25 июня 2021 г.

Финансирование
Исследование не имело спонсорской поддержки.

Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов.

Библиографические ссылки

  1. Ozçakar Z.B., Yalçınkaya F., Altas B., Ergün H., Kendirli T., Ateş C., Elhan A.H., Ekim M. Application of the new classification criteria of the Acute Kidney Injury Network: a pilot study in a pediatric population. Pediatr Nephrol. 2009;24(7):1379-1384. PMID: 19308461. https://doi.org/10.1007/s00467-009-1158-1
  2. Sethi S.K., Kumar M., Sharma R., Bazaz S., Kher V. Acute kidney injury in children after cardiopulmonary bypass: risk factors and outcome. Indian Pediatr. 2015;52(3):223-226. PMID: 25848999. https://doi.org/10.1007/s13312-015-0611-4
  3. Meersch M., Schmidt C., Van Aken H., Rossaint J., Görlich D., Stege D., Edward M., Katarzyna J., Alexander Z. Validation of cell-cycle arrest biomarkers for acute kidney injury after pediatric cardiac surgery. PLoS One. 2014;9(10):e110865. PMID: 25343505; PMCID: PMC4208780. https://doi.org/10.1371/journal.pone.0110865
  4. Li S., Krawczeski C.D., Zappitelli M., Devarajan P., Thiessen-Philbrook H., Coca S.G., Kim R.W., Parikh Ch.R., TRIBE-AKI Consortium. Incidence, risk factors, and outcomes of acute kidney injury after pediatric cardiac surgery: a prospective multicenter study. Crit Care Med. 2011;39(6):1493-1499. PMID: 21336114; PMCID: PMC3286600. https://doi.org/10.1097/CCM.0b013e31821201d3
  5. Blinder J.J., Goldstein S.L., Lee V.-V., Baycroft A., Fraser C.D., Nelson D., Jefferies J.L. Congenital heart surgery in infants: effects of acute kidney injury on outcomes. J Thorac Cardiovasc Surg. 2012;143(2):368-374. PMID: 21798562. https://doi.org/10.1016/j.jtcvs.2011.06.021
  6. Morgan C.J., Zappitelli M., Robertson C.M.T., Alton G.Y., Sauve R.S., Joffe A.R., Ross D.B., Rebeyka I.M., Western Canadian Complex Pediatric Therapies Follow-Up Group. Risk factors for and outcomes of acute kidney injury in neonates undergoing complex cardiac surgery. J Pediatr. 2013;162(1):120-127.e1. PMID: 22878115. https://doi.org/10.1016/j.jpeds.2012.06.054
  7. Tóth R., Breuer T., Cserép Z., Lex D., Fazekas L., Sápi E., Szatmári A., Gál J., Székely A. Acute kidney injury is associated with higher morbidity and resource utilization in pediatric patients undergoing heart surgery. Ann Thorac Surg. 2012;93(6):1984-1990. PMID: 22226235. https://doi.org/10.1016/j.athoracsur.2011.10.046
  8. Aydin S.I., Seiden H.S., Blaufox A.D., Parnell V.A., Choudhury T., Punnoose A., Schneider J. Acute kidney injury after surgery for congenital heart disease. Ann Thorac Surg. 2012;94(5):1589-1595. PMID: 22884599. https://doi.org/10.1016/j.athoracsur.2012.06.050
  9. Kidher E., Harling L., Ashrafian H., Naase H., Chukwuemeka A., Anderson J., Francis D.P., Athanasiou T. Pulse wave velocity and neutrophil gelatinase-associated lipocalin as predictors of acute kidney injury following aortic valve replacement. J Cardiothorac Surg. 2014;9:89. PMID: 24886694; PMCID: PMC4057558. https://doi.org/10.1186/1749-8090-9-89
  10. Park S.-K., Hur M., Kim E., Kim W.H., Park J.B., Kim Y., Yang J.-H., Jun T.-G., Kim Ch.S. Risk factors for acute kidney injury after congenital cardiac surgery in infants and children: a retrospective observational study. PLoS One. 2016;11(11):e0166328. PMID: 27832187; PMCID: PMC5104485. https://doi.org/10.1371/journal.pone.0166328
  11. Lee S.H., Kim S.-J., Kim H.J., Son J.S., Lee R., Yoon T.G. Acute kidney injury following cardiopulmonary bypass in children – risk factors and outcomes. Circ J. 2017;81(10):1522-1527. PMID: 28515370. https://doi.org/10.1253/circj.CJ-17-0075
  12. Axelrod D.M., Anglemyer A.T., Sherman-Levine S.F., Zhu A., Grimm P.C., Roth S.J., Sutherland S.M. Initial experience using aminophylline to improve renal dysfunction in the pediatric cardiovascular ICU. Pediatr Crit Care Med. 2014;15(1):21-27. PMID: 24212284. https://doi.org/10.1097/01.pcc.0000436473.12082.2f
  13. Axelrod D.M., Sutherland S.M., Anglemyer A., Grimm P.C., Roth S.J. A double-blinded, randomized, placebo-controlled clinical trial of aminophylline to prevent acute kidney injury in children following Congenital heart surgery with cardiopulmonary bypass. Pediatr Crit Care Med. 2016;17(2):135-143. PMID: 26669642; PMCID: PMC4740222. https://doi.org/10.1097/PCC.0000000000000612
  14. Kwiatkowski D.M., Axelrod D.M., Sutherland S.M., Tesoro T.M., Krawczeski C.D. Dexmedetomidine is associated with lower incidence of acute kidney injury after Congenital heart surgery. Pediatr Crit Care Med. 2016;17(2):128-134. PMID: 26673841. https://doi.org/10.1097/PCC.0000000000000611
  15. Costello J.M., Dunbar-Masterson C., Allan C.K., Gauvreau K., Newburger J.W., McGowan F.X. Jr, Wessel D.L., Mayer J.E. Jr, Salvin J.W., Dionne R.E., Laussen P.C. Impact of empiric nesiritide or milrinone infusion on early postoperative recovery following Fontan surgery: a randomized, double-blind, placebo-controlled trial. Circ Heart Fail. 2014;7(4):596-604. PMID: 24906491. https://doi.org/10.1161/CIRCHEARTFAILURE.113.001312
  16. Costello J.M., Thiagarajan R.R., Dionne R.E., Allan C.K., Booth K.L., Burmester M., Wessel D.L., Laussen P.C. Initial experience with fenoldopam after cardiac surgery in neonates with an insufficient response to conventional diuretics. Pediatr Crit Care Med. 2006;7(1):28-33. PMID: 16395071. https://doi.org/10.1097/01.pcc.0000194046.47306.fb
  17. Ricci Z., Stazi G.V., Di Chiara L., Morelli S., Vitale V., Giorni Ch., Ronco C., Picardo S. Fenoldopam in newborn patients undergoing cardiopulmonary bypass: controlled clinical trial. Interact Cardiovasc Thorac Surg. 2008;7(6):1049-1053. PMID: 18782787. https://doi.org/10.1510/icvts.2008.185025
  18. Elhoff J.J., Chowdhury Sh.M., Zyblewski S.C., Atz A.M., Bradley S.M., Graham E.M. Intraoperative steroid use and outcomes following the Norwood procedure: an analysis of the Pediatric Heart Network’s Public Database. Pediatr Crit Care Med. 2016;17(1):30-35. PMID: 26492058. PMCID: PMC4703451. https://doi.org/10.1097/PCC.0000000000000541
  19. Aiyagari R., Gelehrter S., Bove E.L., Ohye R.G., Devaney E.J., Hirsch J.C., Gurney J.G., Charpie J.R. Effects of N-acetylcysteine on renal dysfunction in neonates undergoing the arterial switch operation. J Thorac Cardiovasc Surg. 2010;139(4):956-961. PMID: 19944431. https://doi.org/10.1016/j.jtcvs.2009.09.025
  20. Селиверстова А.А., Савенкова Н.Д., Марченко С.П., Наумов А.Б. Кардиохирургически-ассоциированное острое повреждение почек у детей. Нефрология. 2016;20(3):17-27. [Seliverstova A.A., Savenkova N.D., Marchenko S.P., Naumov A.B. Cardiac surgery-associated acute kidney injury in children. Nephrology (Saint-Petersburg). 2016;20(3):17-27. (In Russ.)]
  21. Watkins S.C., Williamson K., Davidson M., Donahue B.S. Long-term mortality associated with acute kidney injury in children following congenital cardiac surgery. Paediatr Anaesth. 2014;24(9):919-926. PMID: 24823449. https://doi.org/10.1111/pan.12419
  22. MacDonald C., Norris C., Alton G.Y., Urschel S., Joffe A.R., Morgan C.J., Western Canadian Complex Pediatric Therapies Follow-Up Group. Acute kidney injury after heart transplant in young children: risk factors and outcomes. Pediatr Nephrol. 2016;31(4):671-678. PMID: 26559064. https://doi.org/10.1007/s00467-015-3252-x
  23. O'Neal J.B., Shaw A.D., Billings F.T. 4th. Acute kidney injury following cardiac surgery: current understanding and future directions. Crit Care. 2016;20(1):187. PMID: 27373799; PMCID: PMC4931708. https://doi.org/10.1186/s13054-016-1352-z
  24. Blinder J.J., Asaro L.A., Wypij D., Selewski D.T., Agus M.S.D., Gaies M., Ferguson M.A. Acute kidney injury after pediatric cardiac surgery: a secondary analysis of the safe pediatric euglycemia after cardiac surgery trial. Pediatr Crit Care Med. 2017;18(7):638-646. PMID: 28492399; PMCID: PMC5503840. https://doi.org/10.1097/PCC.0000000000001185
  25. Faubel S., Shah P.B. Immediate consequences of acute kidney injury: the impact of traditional and nontraditional complications on mortality in acute kidney injury. Adv Chronic Kidney Dis. 2016;23(3):179-185. PMID: 27113694. https://doi.org/10.1053/j.ackd.2016.02.007
  26. SooHoo M., Griffin B., Jovanovich A., Soranno D.E., Mack E., Patel S.S., Faubel S., Gist K.M. Acute kidney injury is associated with subsequent infection in neonates after the Norwood procedure: a retrospective chart review. Pediatr Nephrol. 2018;33(7):1235-1242. PMID: 29508077; PMCID: PMC6326095. https://doi.org/10.1007/s00467-018-3907-5
  27. Greenberg J.H., Zappitelli M., Devarajan P., Thiessen-Philbrook H.R., Krawczeski C., Li S., Garg A.X., Coca S., Parikh Ch.R., TRIBE-AKI Consortium. Kidney outcomes 5 years after pediatric cardiac surgery: the TRIBE-AKI study. JAMA Pediatr. 2016;170(11):1071-1078. PMID: 27618162; PMCID: PMC5476457. https://doi.org/10.1001/jamapediatrics.2016.1532
  28. Jang W.S., Kim W.-H., Choi K., Nam J., Jung J.Ch., Kwon B.S., Kim G.B., Kang H.G., Lee J.R., Kim Y.J. Incidence, risk factors and clinical outcomes for acute kidney injury after aortic arch repair in paediatric patients. Eur J Cardiothorac Surg. 2014;45(6):e208-e214. PMID: 24682871. https://doi.org/10.1093/ejcts/ezu132
  29. Cooper D.S., Claes D., Goldstein S.L., Bennett M.R., Ma Q., Devarajan P., Krawczeski C.D. Follow-up renal assessment of injury long-term after acute kidney injury (FRAIL-AKI). Clin j Am Soc Nephrol. 2016;11(1):21-29. PMID: 26576618; PMCID: PMC4702230. https://doi.org/10.2215/CJN.04240415
  30. Cooper D.S., Basu R.K., Price J.F., Goldstein S.L., Krawczeski C.D. The kidney in critical cardiac disease: proceedings from the 10th international conference of the Pediatric Cardiac Intensive Care Society. World J Pediatr Congenit Heart Surg. 2016;7(2):152-163. PMID: 26957397. https://doi.org/10.1177/2150135115623289
  31. Ji B., Undar A. Comparison of perfusion modes on microcirculation during acute and chronic cardiac support: is there a difference? Perfusion. 2007;22(2):115-119. PMID: 17708160. https://doi.org/10.1177/0267659107080115
  32. Ricksten S.-E., Bragadottir G., Redfors B. Renal oxygenation in clinical acute kidney injury. Crit Care. 2013;17(2):221. PMID: 23514538; PMCID: PMC3672481. https://doi.org/10.1186/cc12530
  33. Lameire N., Van Biesen W., Vanholder R. Acute kidney injury. Lancet. 2008;372(9653):1863-1865. PMID: 19041789. https://doi.org/10.1016/S0140-6736(08)61794-8
  34. Hudson C., Hudson J., Swaminathan M., Shaw A., Stafford-Smith M., Patel U.D. Emerging concepts in acute kidney injury following cardiac surgery. Semin Cardiothorac Vasc Anesth. 2008;12(4):320-330. PMID: 19022791; PMCID: PMC2908719. https://doi.org/10.1177/1089253208328582
  35. Fleming G.A., Billings F.T. 4th, Klein T.M., Bichell D.P., Christian K.G., Pretorius M. Angiotensin-converting enzyme inhibition alters the inflammatory and fibrinolytic response to cardiopulmonary bypass in children. Pediatr Crit Care Med. 2011;12(5):532-538. PMID: 20975611; PMCID: PMC3690292. https://doi.org/10.1097/PCC.0b013e3181fe3925
  36. Fujii T., Kurata H., Takaoka M., Muraoka T., Fujisawa Y., Shokoji T., Nishiyama A., Abe Y., Matsumura Y. The role of renal sympathetic nervous system in the pathogenesis of ischemic acute renal failure. Eur J Pharmacol. 2003;481(2-3):241-248. PMID: 14642792. https://doi.org/10.1016/j.ejphar.2003.09.036
  37. Selewski D.T., Charlton J.R., Jetton J.G., Guillet R., Mhanna M.J., Askenazi D.J., Kent A.L. Neonatal acute kidney injury. Pediatrics. 2015;136(2):e463-e473. PMID: 26169430. https://doi.org/10.1542/peds.2014-3819
  38. Zappitelli M., Ambalavanan N., Askenazi D.J., Moxey-Mims M.M., Kimmel P.L., Star R.A., Abitbol C.L., Brophy P.D., Hidalgo G., Hanna M., Morgan C.M., Raju T.N.K., Ray P., Reyes-Bou Z., Roushdi A., Goldstein S.L. Developing a neonatal acute kidney injury research definition: a report from the NIDDK neonatal AKI workshop. Pediatr Res. 2017;82(4):569-573. PMID: 28604760. https://doi.org/10.1038/pr.2017.136
  39. Haase M., Bellomo R., Haase-Fielitz A. Novel biomarkers, oxidative stress, and the role of labile iron toxicity in cardiopulmonary bypass-associated acute kidney injury. J Am Coll Cardiol. 2010;55(19):2024-2033. PMID: 20447525. https://doi.org/10.1016/j.jacc.2009.12.046
  40. Zhang W.R., Garg A.X., Coca S.G., Devereaux Ph.J., Eikelboom J., Kavsak P., McArthur E., Thiessen-Philbrook H., Shortt C., Shlipak M., Whitlock R., Parikh C.R., TRIBE-AKI Consortium. Plasma IL-6 and IL-10 concentrations predict AKI and long-term mortality in adults after cardiac surgery. J Am Soc Nephrol. 2015;26(12):3123-3132. PMID: 25855775; PMCID: PMC4657830. https://doi.org/10.1681/ASN.2014080764
  41. Mamikonian L.S., Mamo L.B., Smith P.B., Koo J., Lodge A.J., Turi J.L. Cardiopulmonary bypass is associated with hemolysis and acute kidney injury in neonates, infants and children. Pediatr Crit Care Med. 2014;15(3):e111-e119. PMID: 24394997; PMCID: PMC3951557. https://doi.org/10.1097/PCC.0000000000000047
  42. Hassinger A.B., Wald E.L., Goodman D.M. Early postoperative fluid overload precedes acute kidney injury and is associated with higher morbidity in pediatric cardiac surgery patients. Pediatr Crit Care Med. 2014;15(2):131-138. PMID: 24366508. https://doi.org/10.1097/PCC.0000000000000043
  43. Basu R.K., Chawla L.S., Wheeler D.S., Goldstein S.L. Renal angina: an emerging paradigm to identify children at risk for acute kidney injury. Pediatr Nephrol. 2012;27(7):1067-1078. PMID: 22012033; PMCID: PMC3362708. https://doi.org/10.1007/s00467-011-2024-5
  44. Wheeler D.S., Dent C.L., Manning P.B., Nelson D.P. Factors prolonging length of stay in the cardiac intensive care unit following the arterial switch operation. Cardiol Young. 2008;18(1):41-50. PMID: 18093360; PMCID: PMC2757101. https://doi.org/10.1017/S1047951107001746
  45. Jenkins K.J., Gauvreau K., Newburger J.W., Spray T.L., Moller J.H., Iezzoni L.I. Consensus-based method for risk adjustment for surgery for congenital heart disease. J Thorac Cardiovasc Surg. 2002;123(1):110-118. PMID: 11782764. https://doi.org/10.1067/mtc.2002.119064
  46. Hirano D., Ito A., Yamada A., Kakegawa D., Miwa S., Umeda Ch., Chiba K., Takemasa Y., Tokunaga A., Ida H. Independent risk factors and 2-year outcomes of acute kidney injury after surgery for congenital heart disease. Am J Nephrol. 2017;46(3):204-209. PMID: 28858859. https://doi.org/10.1159/000480358
  47. Селиверстова А.А., Савенкова Н.Д., Хубулава Г.Г., Марченко С.П., Наумов А.Б. Острое повреждение почек у новорожденных и детей грудного возраста с врожденными пороками сердца после кардиохирургических вмешательств. Нефрология. 2017;21(3):54-60. [Seliverstova A.A., Savenkova N.D., Hubulava G.G., Marchenko S.P., Naumov A.B. Acute kidney injury in neonates and infants with congenital heart disorders after cardiac surgery. Nephrology (Saint-Petersburg). 2017;21(3):54-60. (In Russ.)] https://doi.org/10.24884/1561-6274-2017-3-54-60
  48. Bellomo R., Ronco C., Kellum J.A., Mehta R.L., Palevsky P., Acute Dialysis Quality Initiative workgroup. Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8(4):R204-R212. PMID: 15312219; PMCID: PMC522841. https://doi.org/10.1186/cc2872
  49. Akcan-Arikan A., Zappitelli M., Loftis L.L., Washburn K.K., Jefferson L.S., Goldstein S.L. Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int. 2007;71(10):1028-1035. PMID: 17396113. https://doi.org/10.1038/sj.ki.5002231
  50. Kidney disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2(1):1-138.
  51. Go H., Momoi N., Kashiwabara N., Haneda K., Chishiki M., Imamura T., Sato M., Goto A., Kawasaki Y., Hosoya M. Neonatal and maternal serum creatinine levels during the early postnatal period in preterm and term infants. PloS One. 2018;13(5):e0196721. PMID: 29795567; PMCID: PMC5967735. https://doi.org/10.1371/journal.pone.0196721
  52. Basu R.K., Andrews A., Krawczeski C., Manning P., Wheeler D.S., Goldstein S.L. Acute kidney injury based on corrected serum creatinine is associated with increased morbidity in children following the arterial switch operation. Pediatr Crit Care Med. 2013;14(5):e218-e224. PMID: 23439467. https://doi.org/10.1097/PCC.0b013e3182772f61
  53. SooHoo M.M., Patel S.S., Jaggers J., Faubel S., Gist K.M. Acute kidney injury defined by fluid corrected creatinine in neonates after the Norwood procedure. World J Pediatr Congenit Heart Surg. 2018;9(5):513-521. PMID: 30157730. https://doi.org/10.1177/2150135118775413
  54. Najafi M. Serum creatinine role in predicting outcome after cardiac surgery beyond acute kidney injury. World J Cardiol. 2014;6(9):1006-1021. PMID: 25276301; PMCID: PMC4176792. https://doi.org/10.4330/wjc.v6.i9.1006
  55. Krawczeski C.D., Goldstein S.L., Woo J.G., Wang Y., Piyaphanee N., Ma Q., Bennett M., Devarajan P. Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass. J Am Coll Cardiol. 2011;58(22):2301-2309. PMID: 22093507. PMCID: PMC3220882. https://doi.org/10.1016/j.jacc.2011.08.017
  56. Gist K.M., Goldstein S.L., Wrona J., Alten J.A., Basu R.K., Cooper D.S., Soranno D.E., Duplantis J., Altmann C., Gao Zh., Faubel S. Kinetics of the cell cycle arrest biomarkers (TIMP-2*IGFBP-7) for prediction of acute kidney injury in infants after cardiac surgery. Pediatr Nephrol. 2017;32(9):1611-1619. PMID: 28382566. https://doi.org/10.1007/s00467-017-3655-y
  57. Gillies M.A., Kakar V., Parker R.J., Honoré P.M., Ostermann M. Fenoldopam to prevent acute kidney injury after major surgery – a systematic review and meta-analysis. Crit Care. 2015;19:449. PMID: 26703329; PMCID: PMC4699343. https://doi.org/10.1186/s13054-015-1166-4
  58. Patel N.N., Angelini G.D. Pharmacological strategies for the prevention of acute kidney injury following cardiac surgery: an overview of systematic reviews. Curr Pharm Des. 2014;20(34):5484-5488. PMID: 24669971. https://doi.org/10.2174/1381612820666140325113422
  59. Ricci Z., Luciano R., Favia I., Garisto C., Muraca M., Morelli S., Di Chiara L., Cogo P., Picardo S. High-dose fenoldopam reduces postoperative neutrophil gelatinase-associated lipocaline and cystatin C levels in pediatric cardiac surgery. Crit Care. 2011;15(3):R160. PMID: 21714857; PMCID: PMC3219034. https://doi.org/10.1186/cc10295
  60. Ricci Z., Stazi G.V., Di Chiara L., Morelli S., Vitale V., Giorni C., Ronco C., Picardo S. Fenoldopam in newborn patients undergoing cardiopulmonary bypass: controlled clinical trial. Interact Cardiovasc Thorac Surg. 2008;7(6):1049-1053. PMID: 18782787. https://doi.org/10.1510/icvts.2008.185025
  61. Castrop H. Mediators of tubuloglomerular feedback regulation of glomerular filtration: ATP and adenosine. Acta Physiol (Oxf). 2007;189(1):3-14. PMID: 17280552. https://doi.org/10.1111/j.1748-1716.2006.01610.x
  62. Onder A.M., Rosen D., Mullett Ch., Cottrell L., Kanosky Sh., Grossman O.K., Iqbal H.I., Seachrist E., Samsell L., Gustafson K., Rhodes L., Gustafson R. Comparison of intraoperative aminophylline versus furosemide in treatment of oliguria during pediatric cardiac surgery. Pediatr Crit Care Med. 2016;17(8):753-763. PMID: 27355823; PMCID: PMC5515381. https://doi.org/10.1097/PCC.0000000000000834
  63. Keski-Nisula J., Pesonen E., Olkkola K.T., Peltola K., Neuvonen P.J., Tuominen N., Sairanen H., Andersson S., Suominen P.K. Methylprednisolone in neonatal cardiac surgery: reduced inflammation without improved clinical outcome. Ann Thorac Surg. 2013;95(6):2126-2132. PMID: 23602068. https://doi.org/10.1016/j.athoracsur.2013.02.013
  64. Bronicki R.A., Backer C.L., Baden H.P., Mavroudis C., Crawford S.E., Green T.P. Dexamethasone reduces the inflammatory response to cardiopulmonary bypass in children. Ann Thorac Surg. 2000;69(5):1490-1495. PMID: 10881828. https://doi.org/10.1016/s0003-4975(00)01082-1
  65. Lomivorotov V., Kornilov I., Boboshko V., Shmyrev V., Bondarenko I., Soynov I., Voytov A., Polyanskih S., Strunin O., Bogachev-Prokophiev A., Landoni G., Nigro Neto C., Oliveira Nicolau G., Saurith Izquierdo L., Nogueira Nascimento V., Wen Zh., Renjie H., Haibo Zh., Bazylev V., Evdokimov M., Sulejmanov Sh., Chernogrivov A., Ponomarev D. Effect of intraoperative dexamethasone on major complications and mortality among infants undergoing cardiac surgery: The DECISION randomized clinical trial. JAMA. 2020;323(24):2485-2492. PMID: 32573670; PMCID: PMC7312411. https://doi.org/10.1001/jama.2020.8133
  66. Ando M., Park I.-S., Wada N., Takahashi Y. Steroid supplementation: a legitimate pharmacotherapy after neonatal open heart surgery. Ann Thorac Surg. 2005;80(5):1672-1678. PMID: 16242437. https://doi.org/10.1016/j.athoracsur.2005.04.035
  67. Robert S.M., Borasino S., Dabal R.J., Cleveland D.C., Hock K.M., Alten J.A. Postoperative hydrocortisone infusion reduces the prevalence of low cardiac output syndrome after neonatal cardiopulmonary bypass. Pediatr Crit Care Med. 2015;16(7):629-636. PMID: 25901540. https://doi.org/10.1097/PCC.0000000000000426
  68. Khajuria A., Tay Ch., Shi J., Zhao H., Ma D. Anesthetics attenuate ischemia-reperfusion induced renal injury: effects and mechanisms. Acta Anaesthesiol Taiwan. 2014;52(4):176-184. PMID: 25477261. https://doi.org/10.1016/j.aat.2014.10.001
  69. Bayram A., Ulgey A., Baykan A., Narin N., Narin F., Esmaoglu A., Boyaci A. The effects of dexmedetomidine on early stage renal functions in pediatric patients undergoing cardiac angiography using non-ionic contrast media: a double-blind, randomized clinical trial. Paediatr Anaesth. 2014;24(4):426-432. PMID: 24417761. https://doi.org/10.1111/pan.12348
  70. Cho J.S., Shim J.-K., Soh S., Kim M.K., Kwak Y.-L. Perioperative dexmedetomidine reduces the incidence and severity of acute kidney injury following valvular heart surgery. Kidney Int. 2016;89(3):693-700. PMID: 26444030. https://doi.org/10.1038/ki.2015.306
  71. Balkanay O.O., Goksedef D., Omeroglu S.N., Ipek G. The dose-related effects of dexmedetomidine on renal functions and serum neutrophil gelatinase-associated lipocalin values after coronary artery bypass grafting: a randomized, triple-blind, placebo-controlled study. Interact Cardiovasc Thorac Surg. 2015;20(2):209-214. PMID: 25392341. https://doi.org/10.1093/icvts/ivu367
  72. Kwiatkowski D.M., Axelrod D.M., Sutherland S.M., Tesoro T.M., Krawczeski C.D. Dexmedetomidine is associated with lower incidence of acute kidney injury after congenital heart surgery. Pediatr Crit Care Med. 2016;17(2):128-134. PMID: 26673841. https://doi.org/10.1097/PCC.0000000000000611
  73. Boutaud O., Moore K.P., Reeder B.J., Harry D., Howie A.J., Wang Sh., Carney C.K., Masterson T.S., Amin T., Wright D.W., Wilson M.T., Oates J.A., Roberts L.J. 2nd. Acetaminophen inhibits hemoprotein-catalyzed lipid peroxidation and attenuates rhabdomyolysis-induced renal failure. Proc Natl Acad Sci USA. 2010;107(6):2699-2704. PMID: 20133658; PMCID: PMC2823910. https://doi.org/10.1073/pnas.0910174107
  74. Simpson S.A., Zaccagni H., Bichell D.P., Christian K.G., Mettler B.A., Donahue B.S., Roberts J.L. 2nd, Pretorius M. Acetaminophen attenuates lipid peroxidation in children undergoing cardiopulmonary bypass. Pediatr Crit Care Med. 2014;15(6):503-551. PMID: 24732290; PMCID: PMC4087071. https://doi.org/10.1097/PCC.0000000000000149
  75. Bellos I., lliopoulos D.C., Perrea D.N. Pharmacological interventions for the prevention of acute kidney injury after pediatric cardiac surgery: a network meta-analysis. Clin Exp Nephrol. 2019;23(6):782-791. PMID: 30734166. https://doi.org/10.1007/s10157-019-01706-9
  76. Bojan M., Gioanni S., Vouhé P.R., Journais D., Pouard P. Early initiation of peritoneal dialysis in neonates and infants with acute kidney injury following cardiac surgery is associated with a significant decrease in mortality. Kidney Int. 2012;82(4):474-481. PMID: 22622499. https://doi.org/10.1038/ki.2012.172
  77. Kwiatkowski D.M., Menon Sh., Krawczeski C.D., Goldstein S.L., Morales D.L.S., Phillips A., Manning P.B., Eghtesady P., Wang Y., Nelson D.P., Cooper D.S. Improved outcomes with peritoneal dialysis catheter placement after cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg. 2015;149(1):230-236. PMID: 24503323. https://doi.org/10.1016/j.jtcvs.2013.11.040
  78. Alkan T., Akçevin A., Türkoglu H., Paker T., Sasmazel A., Bayer V., Ersoy C., Askn D., Aytaç A. Postoperative prophylactic peritoneal dialysis in neonates and infants after complex congenital cardiac surgery. ASAIO J. 2006;52(6):693-697. PMID: 17117060. https://doi.org/10.1097/01.mat.0000249041.52862.fa
  79. Sasser W.C., Dabal R.J., Askenazi D.J., Borasino S., Moellinger A.B., Kirklin J.K., Alten J.A. Prophylactic peritoneal dialysis following cardiopulmonary bypass in children is associated with decreased inflammation and improved clinical outcomes. Congenit Heart Dis. 2014;9(2):106-115. PMID: 23647999. https://doi.org/10.1111/chd.12072
  80. Ryerson L.M., Mackie A.S., Atallah J., Joffe A.R., Rebeyka I.M., Ross D.B., Adatia I. Prophylactic peritoneal dialysis catheter does not decrease time to achieve a negative fluid balance after the Norwood procedure: a randomized controlled trial. J Thorac Cardiovasc Surg. 2015;149(1):222-228. PMID: 25218539. https://doi.org/10.1016/j.jtcvs.2014.08.011
  81. Ranucci M., Pistuddi V., Carboni G., Cotza M., Ditta A., Boncilli A., Brozzi S., Pelissero G., Surgical and Clinical Outcome Research (SCORE) Group. Effects of priming volume reduction on allogeneic red blood cell transfusions and renal outcome after heart surgery. Perfusion. 2015;30(2):120-126. PMID: 24843113. https://doi.org/10.1177/0267659114535649
  82. Milano A.D., Dodonov M., Van Oeveren W., Onorati F., John Gu Y., Tessari M., Menon T., Gottin L., Faggian G. Pulsatile cardio-pulmonary bypass and renal function in elderly patients undergoing aortic valve surgery. Eur J Cardiothorac Surg. 2015;47(2):291-298. PMID: 24740935. https://doi.org/10.1093/ejcts/ezu136
  83. Matata B.M., Scawn N., Morgan M., Shirley S., Kemp I., Richards S., Lane S., Wilson K., Stables R., Jackson M., Haycox A., Mediratta N. A single-center randomized trial of intraoperative zero-balanced ultrafiltration during cardiopulmonary bypass for patients with impaired kidney function undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2015;29(5):1236-1247. PMID: 26119403. https://doi.org/10.1053/j.jvca.2015.02.020
  84. Roscitano A., Benedetto U., Goracci M., Capuano F., Lucani R., Sinatra R. Intraoperative continuous venovenous hemofiltration during coronary surgery. Asian Cardiovasc Thorac Ann. 2009;17(5):462-466. PMID: 19917785. https://doi.org/10.1177/0218492309348504