Опубликован 28.12.2021
Ключевые слова
- врожденный порок сердца,
- искусственное кровообращение,
- острое повреждение почек
Как цитировать
Copyright (c) 2021 Сергеев С.А., Ломиворотов В.В.
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Аннотация
Острое повреждение почек после кардиохирургических вмешательств у детей широко распространено. Применяемые в клинической практике подходы помогли уточнить эпидемиологию, факторы риска и патофизиологию этого состояния. Современные шкалы pRIFLE, AKIN и KDIGO, основанные на изменении уровня сывороточного креатинина и темпа диуреза, позволяют выявлять и ранжировать острое повреждение почек по степени тяжести. Однако стратегии диагностики вышли за рамки одного лишь креатинина и предлагают использовать маркеры повреждения почечной ткани. В настоящее время два из них: липокалин, ассоциированный с желатиназой нейтрофилов, а также тканевой ингибитор металлопротеиназы-2 и белок, связывающий инсулиноподобный фактор роста-7, — могут быть использованы для ранней диагностики.
Предикторами острого повреждения почек после кардиохирургических вмешательств являются ренальные и внепочечные факторы риска, наиболее весомые из которых — ранний детский возраст, длительность искусственного кровообращения, необходимость в искусственной вентиляции легких и инотропной поддержке до оперативного вмешательства. Поддержание должного перфузионного давления во время искусственного кровообращения, а также исключение нефротоксичных препаратов и перегрузки жидкостью снижают риск патологии. Ультрафильтрация и раннее начало заместительной почечной терапии в послеоперационном периоде значимо повышают выживаемость.
Для поиска и отбора литературных источников использовали базы данных PubMed, Scopus и Web of Science.
Цель обзора — анализ имеющихся в литературе данных по острому повреждению почек в детской кардиохирургии. Результаты демонстрируют различия в частоте выявления острого повреждения почек, связанного с кардиохирургическими вмешательствами, и эффективности методов профилактики и лечения данного осложнения. Дальнейшее всестороннее изучение вопроса, создание медицинских электронных баз данных о пациентах, минимизация влияния факторов риска, своевременное предупреждение и лечение осложнений позволят предотвратить патологию и снизить вероятность прогрессирования в более тяжелую стадию.
Поступила в редакцию 12 апреля 2021 г. Исправлена 24 июня 2021 г. Принята к печати 25 июня 2021 г.
Финансирование
Исследование не имело спонсорской поддержки.
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов.
Библиографические ссылки
- Ozçakar Z.B., Yalçınkaya F., Altas B., Ergün H., Kendirli T., Ateş C., Elhan A.H., Ekim M. Application of the new classification criteria of the Acute Kidney Injury Network: a pilot study in a pediatric population. Pediatr Nephrol. 2009;24(7):1379-1384. PMID: 19308461. https://doi.org/10.1007/s00467-009-1158-1
- Sethi S.K., Kumar M., Sharma R., Bazaz S., Kher V. Acute kidney injury in children after cardiopulmonary bypass: risk factors and outcome. Indian Pediatr. 2015;52(3):223-226. PMID: 25848999. https://doi.org/10.1007/s13312-015-0611-4
- Meersch M., Schmidt C., Van Aken H., Rossaint J., Görlich D., Stege D., Edward M., Katarzyna J., Alexander Z. Validation of cell-cycle arrest biomarkers for acute kidney injury after pediatric cardiac surgery. PLoS One. 2014;9(10):e110865. PMID: 25343505; PMCID: PMC4208780. https://doi.org/10.1371/journal.pone.0110865
- Li S., Krawczeski C.D., Zappitelli M., Devarajan P., Thiessen-Philbrook H., Coca S.G., Kim R.W., Parikh Ch.R., TRIBE-AKI Consortium. Incidence, risk factors, and outcomes of acute kidney injury after pediatric cardiac surgery: a prospective multicenter study. Crit Care Med. 2011;39(6):1493-1499. PMID: 21336114; PMCID: PMC3286600. https://doi.org/10.1097/CCM.0b013e31821201d3
- Blinder J.J., Goldstein S.L., Lee V.-V., Baycroft A., Fraser C.D., Nelson D., Jefferies J.L. Congenital heart surgery in infants: effects of acute kidney injury on outcomes. J Thorac Cardiovasc Surg. 2012;143(2):368-374. PMID: 21798562. https://doi.org/10.1016/j.jtcvs.2011.06.021
- Morgan C.J., Zappitelli M., Robertson C.M.T., Alton G.Y., Sauve R.S., Joffe A.R., Ross D.B., Rebeyka I.M., Western Canadian Complex Pediatric Therapies Follow-Up Group. Risk factors for and outcomes of acute kidney injury in neonates undergoing complex cardiac surgery. J Pediatr. 2013;162(1):120-127.e1. PMID: 22878115. https://doi.org/10.1016/j.jpeds.2012.06.054
- Tóth R., Breuer T., Cserép Z., Lex D., Fazekas L., Sápi E., Szatmári A., Gál J., Székely A. Acute kidney injury is associated with higher morbidity and resource utilization in pediatric patients undergoing heart surgery. Ann Thorac Surg. 2012;93(6):1984-1990. PMID: 22226235. https://doi.org/10.1016/j.athoracsur.2011.10.046
- Aydin S.I., Seiden H.S., Blaufox A.D., Parnell V.A., Choudhury T., Punnoose A., Schneider J. Acute kidney injury after surgery for congenital heart disease. Ann Thorac Surg. 2012;94(5):1589-1595. PMID: 22884599. https://doi.org/10.1016/j.athoracsur.2012.06.050
- Kidher E., Harling L., Ashrafian H., Naase H., Chukwuemeka A., Anderson J., Francis D.P., Athanasiou T. Pulse wave velocity and neutrophil gelatinase-associated lipocalin as predictors of acute kidney injury following aortic valve replacement. J Cardiothorac Surg. 2014;9:89. PMID: 24886694; PMCID: PMC4057558. https://doi.org/10.1186/1749-8090-9-89
- Park S.-K., Hur M., Kim E., Kim W.H., Park J.B., Kim Y., Yang J.-H., Jun T.-G., Kim Ch.S. Risk factors for acute kidney injury after congenital cardiac surgery in infants and children: a retrospective observational study. PLoS One. 2016;11(11):e0166328. PMID: 27832187; PMCID: PMC5104485. https://doi.org/10.1371/journal.pone.0166328
- Lee S.H., Kim S.-J., Kim H.J., Son J.S., Lee R., Yoon T.G. Acute kidney injury following cardiopulmonary bypass in children – risk factors and outcomes. Circ J. 2017;81(10):1522-1527. PMID: 28515370. https://doi.org/10.1253/circj.CJ-17-0075
- Axelrod D.M., Anglemyer A.T., Sherman-Levine S.F., Zhu A., Grimm P.C., Roth S.J., Sutherland S.M. Initial experience using aminophylline to improve renal dysfunction in the pediatric cardiovascular ICU. Pediatr Crit Care Med. 2014;15(1):21-27. PMID: 24212284. https://doi.org/10.1097/01.pcc.0000436473.12082.2f
- Axelrod D.M., Sutherland S.M., Anglemyer A., Grimm P.C., Roth S.J. A double-blinded, randomized, placebo-controlled clinical trial of aminophylline to prevent acute kidney injury in children following Congenital heart surgery with cardiopulmonary bypass. Pediatr Crit Care Med. 2016;17(2):135-143. PMID: 26669642; PMCID: PMC4740222. https://doi.org/10.1097/PCC.0000000000000612
- Kwiatkowski D.M., Axelrod D.M., Sutherland S.M., Tesoro T.M., Krawczeski C.D. Dexmedetomidine is associated with lower incidence of acute kidney injury after Congenital heart surgery. Pediatr Crit Care Med. 2016;17(2):128-134. PMID: 26673841. https://doi.org/10.1097/PCC.0000000000000611
- Costello J.M., Dunbar-Masterson C., Allan C.K., Gauvreau K., Newburger J.W., McGowan F.X. Jr, Wessel D.L., Mayer J.E. Jr, Salvin J.W., Dionne R.E., Laussen P.C. Impact of empiric nesiritide or milrinone infusion on early postoperative recovery following Fontan surgery: a randomized, double-blind, placebo-controlled trial. Circ Heart Fail. 2014;7(4):596-604. PMID: 24906491. https://doi.org/10.1161/CIRCHEARTFAILURE.113.001312
- Costello J.M., Thiagarajan R.R., Dionne R.E., Allan C.K., Booth K.L., Burmester M., Wessel D.L., Laussen P.C. Initial experience with fenoldopam after cardiac surgery in neonates with an insufficient response to conventional diuretics. Pediatr Crit Care Med. 2006;7(1):28-33. PMID: 16395071. https://doi.org/10.1097/01.pcc.0000194046.47306.fb
- Ricci Z., Stazi G.V., Di Chiara L., Morelli S., Vitale V., Giorni Ch., Ronco C., Picardo S. Fenoldopam in newborn patients undergoing cardiopulmonary bypass: controlled clinical trial. Interact Cardiovasc Thorac Surg. 2008;7(6):1049-1053. PMID: 18782787. https://doi.org/10.1510/icvts.2008.185025
- Elhoff J.J., Chowdhury Sh.M., Zyblewski S.C., Atz A.M., Bradley S.M., Graham E.M. Intraoperative steroid use and outcomes following the Norwood procedure: an analysis of the Pediatric Heart Network’s Public Database. Pediatr Crit Care Med. 2016;17(1):30-35. PMID: 26492058. PMCID: PMC4703451. https://doi.org/10.1097/PCC.0000000000000541
- Aiyagari R., Gelehrter S., Bove E.L., Ohye R.G., Devaney E.J., Hirsch J.C., Gurney J.G., Charpie J.R. Effects of N-acetylcysteine on renal dysfunction in neonates undergoing the arterial switch operation. J Thorac Cardiovasc Surg. 2010;139(4):956-961. PMID: 19944431. https://doi.org/10.1016/j.jtcvs.2009.09.025
- Селиверстова А.А., Савенкова Н.Д., Марченко С.П., Наумов А.Б. Кардиохирургически-ассоциированное острое повреждение почек у детей. Нефрология. 2016;20(3):17-27. [Seliverstova A.A., Savenkova N.D., Marchenko S.P., Naumov A.B. Cardiac surgery-associated acute kidney injury in children. Nephrology (Saint-Petersburg). 2016;20(3):17-27. (In Russ.)]
- Watkins S.C., Williamson K., Davidson M., Donahue B.S. Long-term mortality associated with acute kidney injury in children following congenital cardiac surgery. Paediatr Anaesth. 2014;24(9):919-926. PMID: 24823449. https://doi.org/10.1111/pan.12419
- MacDonald C., Norris C., Alton G.Y., Urschel S., Joffe A.R., Morgan C.J., Western Canadian Complex Pediatric Therapies Follow-Up Group. Acute kidney injury after heart transplant in young children: risk factors and outcomes. Pediatr Nephrol. 2016;31(4):671-678. PMID: 26559064. https://doi.org/10.1007/s00467-015-3252-x
- O'Neal J.B., Shaw A.D., Billings F.T. 4th. Acute kidney injury following cardiac surgery: current understanding and future directions. Crit Care. 2016;20(1):187. PMID: 27373799; PMCID: PMC4931708. https://doi.org/10.1186/s13054-016-1352-z
- Blinder J.J., Asaro L.A., Wypij D., Selewski D.T., Agus M.S.D., Gaies M., Ferguson M.A. Acute kidney injury after pediatric cardiac surgery: a secondary analysis of the safe pediatric euglycemia after cardiac surgery trial. Pediatr Crit Care Med. 2017;18(7):638-646. PMID: 28492399; PMCID: PMC5503840. https://doi.org/10.1097/PCC.0000000000001185
- Faubel S., Shah P.B. Immediate consequences of acute kidney injury: the impact of traditional and nontraditional complications on mortality in acute kidney injury. Adv Chronic Kidney Dis. 2016;23(3):179-185. PMID: 27113694. https://doi.org/10.1053/j.ackd.2016.02.007
- SooHoo M., Griffin B., Jovanovich A., Soranno D.E., Mack E., Patel S.S., Faubel S., Gist K.M. Acute kidney injury is associated with subsequent infection in neonates after the Norwood procedure: a retrospective chart review. Pediatr Nephrol. 2018;33(7):1235-1242. PMID: 29508077; PMCID: PMC6326095. https://doi.org/10.1007/s00467-018-3907-5
- Greenberg J.H., Zappitelli M., Devarajan P., Thiessen-Philbrook H.R., Krawczeski C., Li S., Garg A.X., Coca S., Parikh Ch.R., TRIBE-AKI Consortium. Kidney outcomes 5 years after pediatric cardiac surgery: the TRIBE-AKI study. JAMA Pediatr. 2016;170(11):1071-1078. PMID: 27618162; PMCID: PMC5476457. https://doi.org/10.1001/jamapediatrics.2016.1532
- Jang W.S., Kim W.-H., Choi K., Nam J., Jung J.Ch., Kwon B.S., Kim G.B., Kang H.G., Lee J.R., Kim Y.J. Incidence, risk factors and clinical outcomes for acute kidney injury after aortic arch repair in paediatric patients. Eur J Cardiothorac Surg. 2014;45(6):e208-e214. PMID: 24682871. https://doi.org/10.1093/ejcts/ezu132
- Cooper D.S., Claes D., Goldstein S.L., Bennett M.R., Ma Q., Devarajan P., Krawczeski C.D. Follow-up renal assessment of injury long-term after acute kidney injury (FRAIL-AKI). Clin j Am Soc Nephrol. 2016;11(1):21-29. PMID: 26576618; PMCID: PMC4702230. https://doi.org/10.2215/CJN.04240415
- Cooper D.S., Basu R.K., Price J.F., Goldstein S.L., Krawczeski C.D. The kidney in critical cardiac disease: proceedings from the 10th international conference of the Pediatric Cardiac Intensive Care Society. World J Pediatr Congenit Heart Surg. 2016;7(2):152-163. PMID: 26957397. https://doi.org/10.1177/2150135115623289
- Ji B., Undar A. Comparison of perfusion modes on microcirculation during acute and chronic cardiac support: is there a difference? Perfusion. 2007;22(2):115-119. PMID: 17708160. https://doi.org/10.1177/0267659107080115
- Ricksten S.-E., Bragadottir G., Redfors B. Renal oxygenation in clinical acute kidney injury. Crit Care. 2013;17(2):221. PMID: 23514538; PMCID: PMC3672481. https://doi.org/10.1186/cc12530
- Lameire N., Van Biesen W., Vanholder R. Acute kidney injury. Lancet. 2008;372(9653):1863-1865. PMID: 19041789. https://doi.org/10.1016/S0140-6736(08)61794-8
- Hudson C., Hudson J., Swaminathan M., Shaw A., Stafford-Smith M., Patel U.D. Emerging concepts in acute kidney injury following cardiac surgery. Semin Cardiothorac Vasc Anesth. 2008;12(4):320-330. PMID: 19022791; PMCID: PMC2908719. https://doi.org/10.1177/1089253208328582
- Fleming G.A., Billings F.T. 4th, Klein T.M., Bichell D.P., Christian K.G., Pretorius M. Angiotensin-converting enzyme inhibition alters the inflammatory and fibrinolytic response to cardiopulmonary bypass in children. Pediatr Crit Care Med. 2011;12(5):532-538. PMID: 20975611; PMCID: PMC3690292. https://doi.org/10.1097/PCC.0b013e3181fe3925
- Fujii T., Kurata H., Takaoka M., Muraoka T., Fujisawa Y., Shokoji T., Nishiyama A., Abe Y., Matsumura Y. The role of renal sympathetic nervous system in the pathogenesis of ischemic acute renal failure. Eur J Pharmacol. 2003;481(2-3):241-248. PMID: 14642792. https://doi.org/10.1016/j.ejphar.2003.09.036
- Selewski D.T., Charlton J.R., Jetton J.G., Guillet R., Mhanna M.J., Askenazi D.J., Kent A.L. Neonatal acute kidney injury. Pediatrics. 2015;136(2):e463-e473. PMID: 26169430. https://doi.org/10.1542/peds.2014-3819
- Zappitelli M., Ambalavanan N., Askenazi D.J., Moxey-Mims M.M., Kimmel P.L., Star R.A., Abitbol C.L., Brophy P.D., Hidalgo G., Hanna M., Morgan C.M., Raju T.N.K., Ray P., Reyes-Bou Z., Roushdi A., Goldstein S.L. Developing a neonatal acute kidney injury research definition: a report from the NIDDK neonatal AKI workshop. Pediatr Res. 2017;82(4):569-573. PMID: 28604760. https://doi.org/10.1038/pr.2017.136
- Haase M., Bellomo R., Haase-Fielitz A. Novel biomarkers, oxidative stress, and the role of labile iron toxicity in cardiopulmonary bypass-associated acute kidney injury. J Am Coll Cardiol. 2010;55(19):2024-2033. PMID: 20447525. https://doi.org/10.1016/j.jacc.2009.12.046
- Zhang W.R., Garg A.X., Coca S.G., Devereaux Ph.J., Eikelboom J., Kavsak P., McArthur E., Thiessen-Philbrook H., Shortt C., Shlipak M., Whitlock R., Parikh C.R., TRIBE-AKI Consortium. Plasma IL-6 and IL-10 concentrations predict AKI and long-term mortality in adults after cardiac surgery. J Am Soc Nephrol. 2015;26(12):3123-3132. PMID: 25855775; PMCID: PMC4657830. https://doi.org/10.1681/ASN.2014080764
- Mamikonian L.S., Mamo L.B., Smith P.B., Koo J., Lodge A.J., Turi J.L. Cardiopulmonary bypass is associated with hemolysis and acute kidney injury in neonates, infants and children. Pediatr Crit Care Med. 2014;15(3):e111-e119. PMID: 24394997; PMCID: PMC3951557. https://doi.org/10.1097/PCC.0000000000000047
- Hassinger A.B., Wald E.L., Goodman D.M. Early postoperative fluid overload precedes acute kidney injury and is associated with higher morbidity in pediatric cardiac surgery patients. Pediatr Crit Care Med. 2014;15(2):131-138. PMID: 24366508. https://doi.org/10.1097/PCC.0000000000000043
- Basu R.K., Chawla L.S., Wheeler D.S., Goldstein S.L. Renal angina: an emerging paradigm to identify children at risk for acute kidney injury. Pediatr Nephrol. 2012;27(7):1067-1078. PMID: 22012033; PMCID: PMC3362708. https://doi.org/10.1007/s00467-011-2024-5
- Wheeler D.S., Dent C.L., Manning P.B., Nelson D.P. Factors prolonging length of stay in the cardiac intensive care unit following the arterial switch operation. Cardiol Young. 2008;18(1):41-50. PMID: 18093360; PMCID: PMC2757101. https://doi.org/10.1017/S1047951107001746
- Jenkins K.J., Gauvreau K., Newburger J.W., Spray T.L., Moller J.H., Iezzoni L.I. Consensus-based method for risk adjustment for surgery for congenital heart disease. J Thorac Cardiovasc Surg. 2002;123(1):110-118. PMID: 11782764. https://doi.org/10.1067/mtc.2002.119064
- Hirano D., Ito A., Yamada A., Kakegawa D., Miwa S., Umeda Ch., Chiba K., Takemasa Y., Tokunaga A., Ida H. Independent risk factors and 2-year outcomes of acute kidney injury after surgery for congenital heart disease. Am J Nephrol. 2017;46(3):204-209. PMID: 28858859. https://doi.org/10.1159/000480358
- Селиверстова А.А., Савенкова Н.Д., Хубулава Г.Г., Марченко С.П., Наумов А.Б. Острое повреждение почек у новорожденных и детей грудного возраста с врожденными пороками сердца после кардиохирургических вмешательств. Нефрология. 2017;21(3):54-60. [Seliverstova A.A., Savenkova N.D., Hubulava G.G., Marchenko S.P., Naumov A.B. Acute kidney injury in neonates and infants with congenital heart disorders after cardiac surgery. Nephrology (Saint-Petersburg). 2017;21(3):54-60. (In Russ.)] https://doi.org/10.24884/1561-6274-2017-3-54-60
- Bellomo R., Ronco C., Kellum J.A., Mehta R.L., Palevsky P., Acute Dialysis Quality Initiative workgroup. Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8(4):R204-R212. PMID: 15312219; PMCID: PMC522841. https://doi.org/10.1186/cc2872
- Akcan-Arikan A., Zappitelli M., Loftis L.L., Washburn K.K., Jefferson L.S., Goldstein S.L. Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int. 2007;71(10):1028-1035. PMID: 17396113. https://doi.org/10.1038/sj.ki.5002231
- Kidney disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2(1):1-138.
- Go H., Momoi N., Kashiwabara N., Haneda K., Chishiki M., Imamura T., Sato M., Goto A., Kawasaki Y., Hosoya M. Neonatal and maternal serum creatinine levels during the early postnatal period in preterm and term infants. PloS One. 2018;13(5):e0196721. PMID: 29795567; PMCID: PMC5967735. https://doi.org/10.1371/journal.pone.0196721
- Basu R.K., Andrews A., Krawczeski C., Manning P., Wheeler D.S., Goldstein S.L. Acute kidney injury based on corrected serum creatinine is associated with increased morbidity in children following the arterial switch operation. Pediatr Crit Care Med. 2013;14(5):e218-e224. PMID: 23439467. https://doi.org/10.1097/PCC.0b013e3182772f61
- SooHoo M.M., Patel S.S., Jaggers J., Faubel S., Gist K.M. Acute kidney injury defined by fluid corrected creatinine in neonates after the Norwood procedure. World J Pediatr Congenit Heart Surg. 2018;9(5):513-521. PMID: 30157730. https://doi.org/10.1177/2150135118775413
- Najafi M. Serum creatinine role in predicting outcome after cardiac surgery beyond acute kidney injury. World J Cardiol. 2014;6(9):1006-1021. PMID: 25276301; PMCID: PMC4176792. https://doi.org/10.4330/wjc.v6.i9.1006
- Krawczeski C.D., Goldstein S.L., Woo J.G., Wang Y., Piyaphanee N., Ma Q., Bennett M., Devarajan P. Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass. J Am Coll Cardiol. 2011;58(22):2301-2309. PMID: 22093507. PMCID: PMC3220882. https://doi.org/10.1016/j.jacc.2011.08.017
- Gist K.M., Goldstein S.L., Wrona J., Alten J.A., Basu R.K., Cooper D.S., Soranno D.E., Duplantis J., Altmann C., Gao Zh., Faubel S. Kinetics of the cell cycle arrest biomarkers (TIMP-2*IGFBP-7) for prediction of acute kidney injury in infants after cardiac surgery. Pediatr Nephrol. 2017;32(9):1611-1619. PMID: 28382566. https://doi.org/10.1007/s00467-017-3655-y
- Gillies M.A., Kakar V., Parker R.J., Honoré P.M., Ostermann M. Fenoldopam to prevent acute kidney injury after major surgery – a systematic review and meta-analysis. Crit Care. 2015;19:449. PMID: 26703329; PMCID: PMC4699343. https://doi.org/10.1186/s13054-015-1166-4
- Patel N.N., Angelini G.D. Pharmacological strategies for the prevention of acute kidney injury following cardiac surgery: an overview of systematic reviews. Curr Pharm Des. 2014;20(34):5484-5488. PMID: 24669971. https://doi.org/10.2174/1381612820666140325113422
- Ricci Z., Luciano R., Favia I., Garisto C., Muraca M., Morelli S., Di Chiara L., Cogo P., Picardo S. High-dose fenoldopam reduces postoperative neutrophil gelatinase-associated lipocaline and cystatin C levels in pediatric cardiac surgery. Crit Care. 2011;15(3):R160. PMID: 21714857; PMCID: PMC3219034. https://doi.org/10.1186/cc10295
- Ricci Z., Stazi G.V., Di Chiara L., Morelli S., Vitale V., Giorni C., Ronco C., Picardo S. Fenoldopam in newborn patients undergoing cardiopulmonary bypass: controlled clinical trial. Interact Cardiovasc Thorac Surg. 2008;7(6):1049-1053. PMID: 18782787. https://doi.org/10.1510/icvts.2008.185025
- Castrop H. Mediators of tubuloglomerular feedback regulation of glomerular filtration: ATP and adenosine. Acta Physiol (Oxf). 2007;189(1):3-14. PMID: 17280552. https://doi.org/10.1111/j.1748-1716.2006.01610.x
- Onder A.M., Rosen D., Mullett Ch., Cottrell L., Kanosky Sh., Grossman O.K., Iqbal H.I., Seachrist E., Samsell L., Gustafson K., Rhodes L., Gustafson R. Comparison of intraoperative aminophylline versus furosemide in treatment of oliguria during pediatric cardiac surgery. Pediatr Crit Care Med. 2016;17(8):753-763. PMID: 27355823; PMCID: PMC5515381. https://doi.org/10.1097/PCC.0000000000000834
- Keski-Nisula J., Pesonen E., Olkkola K.T., Peltola K., Neuvonen P.J., Tuominen N., Sairanen H., Andersson S., Suominen P.K. Methylprednisolone in neonatal cardiac surgery: reduced inflammation without improved clinical outcome. Ann Thorac Surg. 2013;95(6):2126-2132. PMID: 23602068. https://doi.org/10.1016/j.athoracsur.2013.02.013
- Bronicki R.A., Backer C.L., Baden H.P., Mavroudis C., Crawford S.E., Green T.P. Dexamethasone reduces the inflammatory response to cardiopulmonary bypass in children. Ann Thorac Surg. 2000;69(5):1490-1495. PMID: 10881828. https://doi.org/10.1016/s0003-4975(00)01082-1
- Lomivorotov V., Kornilov I., Boboshko V., Shmyrev V., Bondarenko I., Soynov I., Voytov A., Polyanskih S., Strunin O., Bogachev-Prokophiev A., Landoni G., Nigro Neto C., Oliveira Nicolau G., Saurith Izquierdo L., Nogueira Nascimento V., Wen Zh., Renjie H., Haibo Zh., Bazylev V., Evdokimov M., Sulejmanov Sh., Chernogrivov A., Ponomarev D. Effect of intraoperative dexamethasone on major complications and mortality among infants undergoing cardiac surgery: The DECISION randomized clinical trial. JAMA. 2020;323(24):2485-2492. PMID: 32573670; PMCID: PMC7312411. https://doi.org/10.1001/jama.2020.8133
- Ando M., Park I.-S., Wada N., Takahashi Y. Steroid supplementation: a legitimate pharmacotherapy after neonatal open heart surgery. Ann Thorac Surg. 2005;80(5):1672-1678. PMID: 16242437. https://doi.org/10.1016/j.athoracsur.2005.04.035
- Robert S.M., Borasino S., Dabal R.J., Cleveland D.C., Hock K.M., Alten J.A. Postoperative hydrocortisone infusion reduces the prevalence of low cardiac output syndrome after neonatal cardiopulmonary bypass. Pediatr Crit Care Med. 2015;16(7):629-636. PMID: 25901540. https://doi.org/10.1097/PCC.0000000000000426
- Khajuria A., Tay Ch., Shi J., Zhao H., Ma D. Anesthetics attenuate ischemia-reperfusion induced renal injury: effects and mechanisms. Acta Anaesthesiol Taiwan. 2014;52(4):176-184. PMID: 25477261. https://doi.org/10.1016/j.aat.2014.10.001
- Bayram A., Ulgey A., Baykan A., Narin N., Narin F., Esmaoglu A., Boyaci A. The effects of dexmedetomidine on early stage renal functions in pediatric patients undergoing cardiac angiography using non-ionic contrast media: a double-blind, randomized clinical trial. Paediatr Anaesth. 2014;24(4):426-432. PMID: 24417761. https://doi.org/10.1111/pan.12348
- Cho J.S., Shim J.-K., Soh S., Kim M.K., Kwak Y.-L. Perioperative dexmedetomidine reduces the incidence and severity of acute kidney injury following valvular heart surgery. Kidney Int. 2016;89(3):693-700. PMID: 26444030. https://doi.org/10.1038/ki.2015.306
- Balkanay O.O., Goksedef D., Omeroglu S.N., Ipek G. The dose-related effects of dexmedetomidine on renal functions and serum neutrophil gelatinase-associated lipocalin values after coronary artery bypass grafting: a randomized, triple-blind, placebo-controlled study. Interact Cardiovasc Thorac Surg. 2015;20(2):209-214. PMID: 25392341. https://doi.org/10.1093/icvts/ivu367
- Kwiatkowski D.M., Axelrod D.M., Sutherland S.M., Tesoro T.M., Krawczeski C.D. Dexmedetomidine is associated with lower incidence of acute kidney injury after congenital heart surgery. Pediatr Crit Care Med. 2016;17(2):128-134. PMID: 26673841. https://doi.org/10.1097/PCC.0000000000000611
- Boutaud O., Moore K.P., Reeder B.J., Harry D., Howie A.J., Wang Sh., Carney C.K., Masterson T.S., Amin T., Wright D.W., Wilson M.T., Oates J.A., Roberts L.J. 2nd. Acetaminophen inhibits hemoprotein-catalyzed lipid peroxidation and attenuates rhabdomyolysis-induced renal failure. Proc Natl Acad Sci USA. 2010;107(6):2699-2704. PMID: 20133658; PMCID: PMC2823910. https://doi.org/10.1073/pnas.0910174107
- Simpson S.A., Zaccagni H., Bichell D.P., Christian K.G., Mettler B.A., Donahue B.S., Roberts J.L. 2nd, Pretorius M. Acetaminophen attenuates lipid peroxidation in children undergoing cardiopulmonary bypass. Pediatr Crit Care Med. 2014;15(6):503-551. PMID: 24732290; PMCID: PMC4087071. https://doi.org/10.1097/PCC.0000000000000149
- Bellos I., lliopoulos D.C., Perrea D.N. Pharmacological interventions for the prevention of acute kidney injury after pediatric cardiac surgery: a network meta-analysis. Clin Exp Nephrol. 2019;23(6):782-791. PMID: 30734166. https://doi.org/10.1007/s10157-019-01706-9
- Bojan M., Gioanni S., Vouhé P.R., Journais D., Pouard P. Early initiation of peritoneal dialysis in neonates and infants with acute kidney injury following cardiac surgery is associated with a significant decrease in mortality. Kidney Int. 2012;82(4):474-481. PMID: 22622499. https://doi.org/10.1038/ki.2012.172
- Kwiatkowski D.M., Menon Sh., Krawczeski C.D., Goldstein S.L., Morales D.L.S., Phillips A., Manning P.B., Eghtesady P., Wang Y., Nelson D.P., Cooper D.S. Improved outcomes with peritoneal dialysis catheter placement after cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg. 2015;149(1):230-236. PMID: 24503323. https://doi.org/10.1016/j.jtcvs.2013.11.040
- Alkan T., Akçevin A., Türkoglu H., Paker T., Sasmazel A., Bayer V., Ersoy C., Askn D., Aytaç A. Postoperative prophylactic peritoneal dialysis in neonates and infants after complex congenital cardiac surgery. ASAIO J. 2006;52(6):693-697. PMID: 17117060. https://doi.org/10.1097/01.mat.0000249041.52862.fa
- Sasser W.C., Dabal R.J., Askenazi D.J., Borasino S., Moellinger A.B., Kirklin J.K., Alten J.A. Prophylactic peritoneal dialysis following cardiopulmonary bypass in children is associated with decreased inflammation and improved clinical outcomes. Congenit Heart Dis. 2014;9(2):106-115. PMID: 23647999. https://doi.org/10.1111/chd.12072
- Ryerson L.M., Mackie A.S., Atallah J., Joffe A.R., Rebeyka I.M., Ross D.B., Adatia I. Prophylactic peritoneal dialysis catheter does not decrease time to achieve a negative fluid balance after the Norwood procedure: a randomized controlled trial. J Thorac Cardiovasc Surg. 2015;149(1):222-228. PMID: 25218539. https://doi.org/10.1016/j.jtcvs.2014.08.011
- Ranucci M., Pistuddi V., Carboni G., Cotza M., Ditta A., Boncilli A., Brozzi S., Pelissero G., Surgical and Clinical Outcome Research (SCORE) Group. Effects of priming volume reduction on allogeneic red blood cell transfusions and renal outcome after heart surgery. Perfusion. 2015;30(2):120-126. PMID: 24843113. https://doi.org/10.1177/0267659114535649
- Milano A.D., Dodonov M., Van Oeveren W., Onorati F., John Gu Y., Tessari M., Menon T., Gottin L., Faggian G. Pulsatile cardio-pulmonary bypass and renal function in elderly patients undergoing aortic valve surgery. Eur J Cardiothorac Surg. 2015;47(2):291-298. PMID: 24740935. https://doi.org/10.1093/ejcts/ezu136
- Matata B.M., Scawn N., Morgan M., Shirley S., Kemp I., Richards S., Lane S., Wilson K., Stables R., Jackson M., Haycox A., Mediratta N. A single-center randomized trial of intraoperative zero-balanced ultrafiltration during cardiopulmonary bypass for patients with impaired kidney function undergoing cardiac surgery. J Cardiothorac Vasc Anesth. 2015;29(5):1236-1247. PMID: 26119403. https://doi.org/10.1053/j.jvca.2015.02.020
- Roscitano A., Benedetto U., Goracci M., Capuano F., Lucani R., Sinatra R. Intraoperative continuous venovenous hemofiltration during coronary surgery. Asian Cardiovasc Thorac Ann. 2009;17(5):462-466. PMID: 19917785. https://doi.org/10.1177/0218492309348504