Том 19 № 4-2: Клеточные технологии в кардиологии (спецвыпуск)
ОБЗОРЫ

Применение технологии индуцированных плюрипотентных стволовых клеток для моделирования синдрома удлиненного интервала QT

А. Вялкова
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук, 630090, Новосибирск, пр-т академика Лаврентьева, 10; Новосибирский научно-исследовательский институт патологии кровообращения имени академика Е.Н. Мешалкина Министерства здравоохранения Российской Федерации, 630055, Новосибирск, ул. Речкуновская, 15; Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, 630090, Новосибирск, пр-т академика Лаврентьева, 8
Е. Дементьева
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук, 630090, Новосибирск, пр-т академика Лаврентьева, 10; Новосибирский научно-исследовательский институт патологии кровообращения имени академика Е.Н. Мешалкина Министерства здравоохранения Российской Федерации, 630055, Новосибирск, ул. Речкуновская, 15; Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, 630090, Новосибирск, пр-т академика Лаврентьева, 8
С. Медведев
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук, 630090, Новосибирск, пр-т академика Лаврентьева, 10; Новосибирский научно-исследовательский институт патологии кровообращения имени академика Е.Н. Мешалкина Министерства здравоохранения Российской Федерации, 630055, Новосибирск, ул. Речкуновская, 15; Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, 630090, Новосибирск, пр-т академика Лаврентьева, 8; Новосибирский национальный исследовательский государственный университет, 630090, Новосибирск, ул. Пирогова, 2
Е. Покушалов
Новосибирский научно-исследовательский институт патологии кровообращения имени академика Е.Н. Мешалкина Министерства здравоохранения Российской Федерации, 630055, Новосибирск, ул. Речкуновская, 15
С. Закиян
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук, 630090, Новосибирск, пр-т академика Лаврентьева, 10; Новосибирский научно-исследовательский институт патологии кровообращения имени академика Е.Н. Мешалкина Министерства здравоохранения Российской Федерации, 630055, Новосибирск, ул. Речкуновская, 15; Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, 630090, Новосибирск, пр-т академика Лаврентьева, 8; Новосибирский национальный исследовательский государственный университет, 630090, Новосибирск, ул. Пирогова, 2

Опубликован 14.01.2016

Ключевые слова

  • Синдром удлиненного интервала QT,
  • Индуцированные плюрипотентные стволовые клетки,
  • Кардиомиоциты

Как цитировать

Вялкова, А., Дементьева, Е., Медведев, С., Покушалов, Е., & Закиян, С. (2016). Применение технологии индуцированных плюрипотентных стволовых клеток для моделирования синдрома удлиненного интервала QT. Патология кровообращения и кардиохирургия, 19(4-2), 85–94. https://doi.org/10.21688/1681-3472-2015-4-2-85-94

Аннотация

Синдром удлиненного интервала QT – аритмическое заболевание, связанное с повышенным риском развития желудочковой тахикардии и внезапной смерти. Несмотря на множество проводимых исследований, патология изучена недостаточно, а используемые методы лечения не всегда эффективны. Одна из ключевых проблем – отсутствие адекватной модели синдрома удлиненного интервала QT. Технология индуцированных плюрипотентных стволовых клеток открывает новый этап в моделировании генетических заболеваний человека, в частности наследственных сердечно-сосудистых заболеваний. Способность индуцированных плюрипотентных стволовых клеток дифференцироваться в функциональные кардиомиоциты позволяет использовать их для изучения молекулярных механизмов сердечно-сосудистых заболеваний и поиска новых лекарственных препаратов. В обзоре рассмотрены применение этой технологии для моделирования синдрома удлиненного интервала QT и достигнутые успехи.

Библиографические ссылки

  1. Crotti L., Celano G., Dagradi F., Schwartz P.J. Congenital long QT syndrome // Orphanet. J. Rare Dis. 2008. Vol. 3. P. 18.
    Schwartz P.J., Stramba-Badiale M., Crotti L., Pedrazzini M., Besana A., Bosi G., Gabbarini F., Goulene K., Insolia R., Mannarino S., Mosca F., Nespoli L., Rimini A., Rosati E., Salice P., Spazzolini C. Prevalence of the congenital long-QT syndrome // Circulation. 2009. Vol. 120. № 18. P. 1761–7.
    Roden D.M. Acquired long QT syndromes and the risk of proarrhythmia // J. Cardiovasc. Electrophysiol. 2000. Vol. 11. № 8. P. 938–40.
    Hedley P.L., Jorgensen P., Schlamowitz S., Wangari R., Moolman-Smook J., Brink P.A., Kanters J.K., Corfield V.A., Christiansen M. The genetic basis of long QT and short QT syndromes: a mutation update // Hum. Mutat. 2009. Vol. 30. № 11. P. 1486–511.
    Boczek N.J., Best J.M., Tester D.J., Giudicessi J.R., Middha S., Evans J.M., Kamp T.J., Ackerman M.J. Exome sequencing and systems biology converge to identify novel mutations in the L-type calcium channel, CACNA1C, linked to autosomal dominant long QT syndrome // Circ. Cardiovasc. Genet. 2013. Vol. 6. № 3. P. 279–89.
    Salama G, London B. Mouse models of long QT syndrome // J. Physiol. 2007. Vol. 578. Pt. 1. P. 43–53.
    Hoekstra M., Mummery C.L., Wilde A.A., Bezzina C.R., Verkerk A.O. Induced pluripotent stem cell derived cardiomyocytes as models for cardiac arrhythmias // Front. Physiol. 2012. Vol. 3. P. 346.
    Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors // Cell. 2006. Vol. 126. № 4. P. 663–76.
    Yu J., Vodyanik M.A., Smuga-Otto K., Antosiewicz-Bourget J., Frane J.L., Tian S., Nie J., Jonsdottir G.A., Ruotti V., Stewart R., Slukvin I.I., Thomson J.A. Induced pluripotent stem cell lines derived from human somatic cells // Science. 2007. Vol. 318. № 5858. P. 1917–20.
    Mordwinkin N.M., Burridge P.W., Wu J.C. A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening, and publication standards // J. Cardiovasc. Transl. Res. 2013. Vol. 6. № 1. P. 22–30.
    Shimizu W., Horie M., Ohno S., Takenaka K., Yamaguchi M., Shimizu M., Washizuka T., Aizawa Y., Nakamura K., Ohe T., Aiba T., Miyamoto Y., Yoshimasa Y., Towbin J.A., Priori S.G., Kamakura S. Mutation site-specific differences in arrhythmic risk and sensitivity to sympathetic stimulation in the LQT1 form of congenital long QT syndrome: multicenter study in Japan // J. Am. Coll. Cardiol. 2004. Vol. 44. № 1. P. 117–25.
    Moss A.J., Shimizu W., Wilde A.A., Towbin J.A., Zareba W., Robinson J.L., Qi M., Vincent G.M., Ackerman M.J., Kaufman E.S., Hofman N., Seth R., Kamakura S., Miyamoto Y., Goldenberg I., Andrews M.L., McNitt S. Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene // Circulation. 2007. Vol. 115. № 19. P. 2481–9.
    Priori S.G., Napolitano C., Schwartz P.J. Low penetrance in the long-QT syndrome: clinical impact // Circulation. 1999. Vol. 99. № 4. P. 529–33.
    Moss A.J., Zareba W., Kaufman E.S., Gartman E., Peterson D.R., Benhorin J., Towbin J.A., Keating M.T., Priori S.G., Schwartz P.J., Vincent G.M., Robinson J.L., Andrews M.L., Feng C., Hall W.J., Medina A., Zhang L., Wang Z. Increased risk of arrhythmic events in long-QT syndrome with mutations in the pore region of the human ether-a-go-go-related gene potassium channel // Circulation. 2002. Vol. 105. № 7. P. 794–9.
    Scicluna B.P., Wilde A.A., Bezzina C.R. The primary arrhythmia syndromes: same mutation, different manifestations. Are we starting to understand why? // J. Cardiovasc. Electrophysiol. 2008. Vol. 19. № 4. P. 445–52.
    Moretti A., Bellin M., Welling A., Jung C.B., Lam J.T., Bott-Flügel L., Dorn T., Goedel A., Höhnke C., Hofmann F., Seyfarth M., Sinnecker D., Schömig A., Laugwitz K.L. Patient-specific induced pluripotent stem-cell models for long-QT syndrome // N. Engl. J. Med. 2010. Vol. 363. № 15. P. 1397–409.
    Egashira T., Yuasa S., Suzuki T., Yae K., Aizawa Y., Yamakawa H., Murata M., Miyoshi S., Kamiya K., Fukuda K. Disease characterization using LQTS-specific induced pluripotent stem cells // Cardiovasc. Res. 2012. Vol. 95. № 4. P. 419–29.
    Itzhaki I., Maizels L., Huber I., Zwi-Dantsis L., Caspi O., Winterstern A., Feldman O., Gepstein A., Arbel G., Hammerman H., Boulos M., Gepstein L. Modelling the long QT syndrome with induced pluripotent stem cells // Nature. 2011. Vol. 471. № 7337. P. 225–9.
    Lahti A.L., Kujala V.J., Chapman H., Koivisto A.P., Pekkanen-Mattila M., Kerkelä E., Hyttinen J., Kontula K., Swan H., Conklin B.R., Yamanaka S., Silvennoinen O., Aalto-Setälä K. Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture // Dis. Model. Mech. 2012. Vol. 5. № 2. P. 220–30.
    Ma D., Wei H., Zhao Y., Lu J., Li G., Sahib N.B., Tan T.H., Wong K.Y., Shim W., Wong P., Cook S.A., Liew R. Modeling type 3 long QT syndrome with cardiomyocytes derived from patient-specific induced pluripotent stem cells // Int. J. Cardiol. 2013. Vol. 168. № 6. P. 5277–86.
    Terrenoire C., Wang K., Tung K.W., Chung W.K., Pass R.H., Lu J.T., Jean J.C., Omari A., Sampson K.J., Kotton D.N., Keller G., Kass R.S. Induced pluripotent stem cells used to reveal drug actions in a long QT syndrome family with complex genetics // J. Gen. Physiol. 2013. Vol. 141. № 1. P. 61–72.
    Yazawa M., Hsueh B., Jia X., Pasca A.M., Bernstein J.A., Hallmayer J., Dolmetsch R.E. Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome // Nature. 2011. Vol. 471. № 7337. P. 230–4.
    Splawski I., Timothy K.W., Sharpe L.M., Decher N., Kumar P., Bloise R., Napolitano C., Schwartz P.J., Joseph R.M., Condouris K., Tager-Flusberg H., Priori S.G., Sanguinetti M.C., Keating M.T. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism // Cell. 2004. Vol. 119. № 1. P. 19–31.
    Ma D., Wei H., Lu J., Huang D., Liu Z., Loh L.J., Islam O., Liew R., Shim W., Cook S.A. Characterization of a novel KCNQ1 mutation for type 1 long QT syndrome and assessment of the therapeutic potential of a novel IKs activator using patient-specific induced pluripotent stem cell-derived cardiomyocyte // Stem Cell Res. Ther. 2015. Vol. 6. P. 39.
    Matsa E., Rajamohan D., Dick E., Young L., Mellor I., Staniforth A., Denning C. Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation // Eur. Heart J. 2011. Vol. 32. № 8. P. 952–62.
    Liang P., Lan F., Lee A.S., Gong T., Sanchez-Freire V., Wang Y., Diecke S., Sallam K., Knowles J.W., Wang P.J., Nguyen P.K., Bers D.M., Robbins R.C., Wu J.C. Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity // Circulation. 2013. Vol. 127. № 16. P. 1677–91.
    Bellin M., Casini S., Davis R.P., D'Aniello C., Haas J., Ward-van Oostwaard D., Tertoolen L.G., Jung C.B., Elliott D.A., Welling A., Laugwitz K.L., Moretti A., Mummery C.L. Isogenic human pluripotent stem cell pairs reveal the role of a KCNH2 mutation in long-QT syndrome // EMBO J. 2013. Vol. 32. № 24. P. 3161–75.
    Gouas L., Nicaud V., Berthet M., Forhan A., Tiret L., Balkau B., Guicheney P. Association of KCNQ1, KCNE1, KCNH2 and SCN5A polymorphisms with QTc interval length in a healthy population // Eur. J. Hum. Genet. 2005. Vol. 13. № 11. P. 1213–22.
    Pfeufer A., Jalilzadeh S., Perz S., Mueller J.C., Hinterseer M., Illig T., Akyol M., Huth C., Schöpfer-Wendels A., Kuch B., Steinbeck G., Holle R., Näbauer M., Wichmann H.E., Meitinger T., Kääb S. Common variants in myocardial ion channel genes modify the QT interval in the general population: results from the KORA study // Circ. Res. 2005. Vol. 96. № 6. P. 693–701.
    Mank-Seymour A.R., Richmond J.L., Wood L.S., Reynolds J.M., Fan Y.T., Warnes G.R., Milos P.M., Thompson J.F. Association of torsades de pointes with novel and known single nucleotide polymorphisms in long QT syndrome genes // Am. Heart J. 2006. P. 152. № 6. P. 1116–22.
    Newton-Cheh C., Guo C.Y., Larson M.G., Musone S.L., Surti A., Camargo A.L., Drake J.A., Benjamin E.J., Levy D., D'Agostino R.B.Sr, Hirschhorn J.N., O'donnell C.J. Common genetic variation in KCNH2 is associated with QT interval duration: the Framingham Heart Study // Circulation. 2007. Vol. 116. № 10. P. 1128–36.
    Marjamaa A., Newton-Cheh C., Porthan K., Reunanen A., Lahermo P., Väänänen H., Jula A., Karanko H., Swan H., Toivonen L., Nieminen M.S., Viitasalo M., Peltonen L., Oikarinen L., Palotie A., Kontula K, Salomaa V. Common candidate gene variants are associated with QT interval duration in the general population // J. Intern. Med. 2009. Vol. 265. № 4. P. 448–58.
    Chen L., Zhang W., Fang C., et al. Polymorphism H558R in the human cardiac sodium channel SCN5A gene is associated with atrial fibrillation // J. Int. Med. Res. 2011. Vol. 39. № 5. P. 1908–16.
    Matsa E., Dixon J.E., Medway C., Georgiou O., Patel M.J., Morgan K., Kemp P.J., Staniforth A., Mellor I., Denning C. Allele-specific RNA interference rescues the long-QT syndrome phenotype in human-induced pluripotency stem cell cardiomyocytes // Eur. Heart J. 2014. Vol. 35. № 16. P. 1078–87.
    Maherali N., Hochedlinger K. Guidelines and techniques for the generation of induced pluripotent stem cells // Cell Stem Cell. 2008. Vol. 3. № 6. P. 595–605.
    Gore A., Li Z., Fung H.L., Young J.E, Agarwal S., Antosiewicz-Bourget J., Canto I., Giorgetti A., Israel M. A., Kiskinis E., Lee J.H., Loh Y.H., Manos P.D., Montserrat N., Panopoulos A.D., Ruiz S., Wilbert M.L., Yu J., Kirkness E.F., Belmonte J.C.I., Rossi D.J., Thomson J.A., Eggan K., Daley G.Q., Goldstein L.S.B., Zhang K. Somatic coding mutations in human induced pluripotent stem cells // Nature. 2011. Vol. 471. № 7336. P. 63–7.
    Medvedev S.P., Grigor'eva E.V., Shevchenko A.I., Malakhova A.A., Dementyeva E.V., Shilov A.A., Pokushalov E.A., Zaidman A.M., Aleksandrova M.A., Plotnikov E.Y., Sukhikh G.T., Zakian S.M. Human induced pluripotent stem cells derived from fetal neural stem cells successfully undergo directed differentiation into cartilage // Stem Cells Dev. 2011. Vol. 20. № 6. P. 1099–112.
    Yu J., Hu K., Smuga-Otto K., Tian S., Stewart R., Slukvin I.I., Thomson J.A. Human induced pluripotent stem cells free of vector and transgene sequences // Science. 2009. Vol. 324. № 5928. P. 797–801.
    Zhou W., Freed C.R. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells // Stem Cells. 2009. Vol. 27. № 11. P. 2667–74.
    Kim K., Doi A., Wen B., Ng K., Zhao R., Cahan P., Kim J., Aryee M.J., Ji H., Ehrlich L., Yabuuchi A., Takeuchi A., Cunniff K.C., Hongguang H., Mckinney-Freeman S., Naveiras O., Yoon T.J., Irizarry R.A., Jung N., Seita J., Hanna J., Murakami P., Jaenisch R., Weissleder R., Orkin S.H., Weissman I.L., Feinberg A.P., Daley G.Q. Epigenetic memory in induced pluripotent stem cells // Nature. 2010. Vol. 467. № 7313. P. 285–90.
    Polo J.M., Liu S., Figueroa M.E., Kulalert W., Eminli S., Tan K.Y., Apostolou E., Stadtfeld M., Li Y., Shioda T., Natesan S., Wagers A.J., Melnick A., Evans T., Hochedlinger K. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells // Nat. Biotechnol. 2010. Vol. 28. № 8. P. 848–55.
    Kim K., Zhao R., Doi A., Ng K., Unternaehrer J., Cahan P., Huo H., Loh Y.H., Aryee M.J., Lensch M.W., Li H., Collins J.J., Feinberg A.P., Daley G.Q. Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells // Nat. Biotechnol. 2011. Vol. 29. № 12. P. 1117–9.
    Chan Y.C., Ting S., Lee Y.K., Ng K.M., Zhang J., Chen Z., Siu C.W., Oh S.K., Tse H.F. Electrical stimulation promotes maturation of cardiomyocytes derived from human embryonic stem cells // J. Cardiovasc. Transl. Res. 2013. Vol. 6. № 6. P. 989–99.
    Ivashchenko C.Y., Pipes G.C., Lozinskaya I.M., Lin Z., Xiaoping X., Needle S., Grygielko E.T., Hu E., Toomey J.R., Lepore J.J., Willette R.N. Human-induced pluripotent stem cell-derived cardiomyocytes exhibit temporal changes in phenotype // Am. J. Physiol. Heart. Circ. Physiol. 2013. Vol. 305. № 6. P. H913–22.
    Mihic A., Li J., Miyagi Y., Gagliardi M., Li S.H., Zu J., Weisel R.D., Keller G., Li R.K. The effect of cyclic stretch on maturation and 3D tissue formation of human embryonic stem cell-derived cardiomyocytes // Biomaterials. 2014. Vol. 35. № 9. P. 2798–808.
    Ding Q., Lee Y.K., Schaefer E.A., et al. A TALEN genome-editing system for generating human stem cell-based disease models // Cell Stem Cell. 2013. Vol. 12. № 2. P. 238–51.
    Ding Q., Regan S.N., Xia Y., Oostrom L.A., Cowan C.A., Musunuru K. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs // Cell Stem Cell. 2013. Vol. 12. № 4. P. 393–4.
    Kadota S., Minami I., Morone N., Heuser J.E., Agladze K., Nakatsuji N. Development of a reentrant arrhythmia model in human pluripotent stem cell-derived cardiac cell sheets // Eur. Heart J. 2013. Vol. 34. № 15. P. 1147–56.
    Sinnecker D., Goedel A., Dorn T., Dirschinger R.J., Moretti A., Laugwitz K.L. Modeling long-QT syndromes with iPS cells // J. Cardiovasc. Transl. Res. 2013. Vol. 6. № 1. P. 31–6.
    Okata S., Yuasa S., Yamane T., Furukawa T., Fukuda K. The generation of induced pluripotent stem cells from a patient with KCNH2 G603D, without LQT2 disease associated symptom // J. Med. Dent. Sci. 2013. Vol. 60. № 1. P. 17–22.