Том 19 № 4-2: Клеточные технологии в кардиологии (спецвыпуск)
ОБЗОРЫ

Моделирование наследственных кардиомиопатий человека на основе дифференцированных производных индуцированных плюрипотентных стволовых клеток

Д. Байзигитов
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук, 630090, Новосибирск, пр-т академика Лаврентьева, 10; Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, 630090, Новосибирск, пр-т академика Лаврентьева, 8; Новосибирский научно-исследовательский институт патологии кровообращения имени академика Е.Н. Мешалкина Министерства здравоохранения Российской Федерации, 630055, Новосибирск, ул. Речкуновская, 15
С. Медведев
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук, 630090, Новосибирск, пр-т академика Лаврентьева, 10; Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, 630090, Новосибирск, пр-т академика Лаврентьева, 8; Новосибирский научно-исследовательский институт патологии кровообращения имени академика Е.Н. Мешалкина Министерства здравоохранения Российской Федерации, 630055, Новосибирск, ул. Речкуновская, 15; Новосибирский национальный исследовательский государственный университет, 630090, Новосибирск, ул. Пирогова, 2
Е. Дементьева
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук, 630090, Новосибирск, пр-т академика Лаврентьева, 10; Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, 630090, Новосибирск, пр-т академика Лаврентьева, 8; Новосибирский научно-исследовательский институт патологии кровообращения имени академика Е.Н. Мешалкина Министерства здравоохранения Российской Федерации, 630055, Новосибирск, ул. Речкуновская, 15
Е. Покушалов
Новосибирский научно-исследовательский институт патологии кровообращения имени академика Е.Н. Мешалкина Министерства здравоохранения Российской Федерации, 630055, Новосибирск, ул. Речкуновская, 15
С. Закиян
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук, 630090, Новосибирск, пр-т академика Лаврентьева, 10; Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, 630090, Новосибирск, пр-т академика Лаврентьева, 8; Новосибирский научно-исследовательский институт патологии кровообращения имени академика Е.Н. Мешалкина Министерства здравоохранения Российской Федерации, 630055, Новосибирск, ул. Речкуновская, 15; Новосибирский национальный исследовательский государственный университет, 630090, Новосибирск, ул. Пирогова, 2

Опубликован 14.01.2016

Ключевые слова

  • Индуцированные плюрипотентные стволовые клетки,
  • Кардиомиопатия,
  • Моделирование заболеваний

Как цитировать

Байзигитов, Д., Медведев, С., Дементьева, Е., Покушалов, Е., & Закиян, С. (2016). Моделирование наследственных кардиомиопатий человека на основе дифференцированных производных индуцированных плюрипотентных стволовых клеток. Патология кровообращения и кардиохирургия, 19(4-2), 95–103. https://doi.org/10.21688/1681-3472-2015-4-2-95-103

Аннотация

Пониманию патогенеза кардиомиопатий препятствовала недоступность образцов тканей сердца на ранних стадиях развития заболевания, что изменилось с появлением пациент-специфичных индуцированных плюрипотентных стволовых клеток, из которых можно получить кардиомиоциты in vitro. Особенность технологии индуцированных плюрипотентных стволовых клеток в том, что при охвате эффектов тысяч индивидуальных генных вариантов фенотип дифференцированных производных этих клеток будет предоставлять более подробную информацию о конкретной болезни данного пациента, чем при простом генотипировании. Авторы обобщают данные о клеточных моделях кардиомиопатий in vitro, акцентируя внимание на выявленном молекулярном и клеточном патогенезе, потенциальной терапии и тестировании новых лекарственных веществ.

Библиографические ссылки

  1. Okita K., Yamakawa T., Matsumura Y., Sato Y., Amano N., Watanabe A., Goshima N., Yamanaka S. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells // Stem Cells. 2013. Vol. 31. № 3. P. 458–66.
  2. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors // Cell. 2006. Vol. 126. № 4. P. 663–76.
  3. Doherty K.R., Talbert D.R., Trusk P.B., Moran D.M., Shell S.A., Bacus S. Structural and functional screening in human induced-pluripotent stem cell-derived cardiomyocytes accurately identifies cardiotoxicity of multiple drug types // Toxicol. Appl. Pharmacol. 2015. Vol. 285. № 1. P. 51–60.
  4. Gieseck R.L. 3rd, Vallier L., Hannan N.R. Generation of Hepatocytes from Pluripotent Stem Cells for Drug Screening and Developmental Modeling // Methods Mol. Biol. 2015. Vol. 1250. P. 123–42.
  5. Shinde V., Klima S., Sureshkumar P.S., Meganathan K., Jagtap S., Rempel E., Rahnenführer J., Hengstler J.G., Waldmann T., Hescheler J., Leist M., Sachinidis A. Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation // J. Vis. Exp. 2015. Vol. 100. P. e52333.
  6. Eschenhagen T., Mummery C., Knollmann B.C. Modelling sarcomeric cardiomyopathies in the dish: from human heart samples to iPSC cardiomyocytes // Cardiovasc. Res. 2015. Vol. 105. № 4. P. 424–38.
  7. Itzhaki I., Maizels L., Huber I, Zwi-Dantsis L., Caspi O., Winterstern A., Feldman O., Gepstein A., Arbel G., Hammerman H., Boulos M., Gepstein L. Modeling the Long QT Syndrome with Human Induced Pluripotent Stem Cells // Circulation. 2010. Vol. 122. № 21. P. 225–9.
  8. Ma D.R., Wei H.M., Lu J., Loh L.J., Islam O., Liew R., Shim W., Cook S.A. Characterization of a novel KCNQ1 mutation for type 1 long QT syndrome and assessment of the therapeutic potential of a novel IKs activator using patient-specific induced pluripotent stem cell-derived cardiomyocytes // Stem Cell Research & Therapy. 2015. Vol. 6. P. 39.
  9. Ma D.R., Wei H.M., Zhao Y.X., Lu J., Li G., Sahib N.B., Tan T.H., Wong K.Y., Shim W., Wong P., Cook S.A., Liew R. Modeling type 3 long QT syndrome with cardiomyocytes derived from patient-specific induced pluripotent stem cells // International Journal of Cardiology. 2013. Vol. 168. № 6. P. 5277–86.
  10. Yazawa M., Hsueh B., Jia X., Pasca A.M., Bernstein J.A., Hallmayer J., and Dolmetsch R.E. Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome // Nature. 2011. Vol. 471. № 7337. P. 230–4.
  11. Ma D., Wei H., Lu J., Ho S., Zhang G., Sun X., Oh Y., Tan S.H., Ng M.L., Shim W., Wong P., Liew R. Generation of patient-specific induced pluripotent stem cell-derived cardiomyocytes as a cellular model of arrhythmogenic right ventricular cardiomyopathy // Eur. Heart J. 2013. Vol. 34. №15. P. 1122–33.
  12. Wen J.Y., Wei C.Y., Shah K., Wong J., Wang C., Chen H.S. Maturation-Based Model of Arrhythmogenic Right Ventricular Dysplasia Using Patient-Specific Induced Pluripotent Stem Cells // Circ. J. 2015. Vol. 79. № 7. P. 1402–8.
  13. Sun N., Yazawa M., Liu J., Han L., Sanchez-Freire V., Abilez O.J., Navarrete E.G., Hu S., Wang L., Lee A., Pavlovic A., Lin S., Chen R., Hajjar R.J., Snyder M.P., Dolmetsch RE., Butte M.J., Ashley E.A., Longaker M.T., Robbins R.C., Wu J.C. Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy // Sci. Transl. Med. 2012. Vol. 4. № 130. P. 130ra47.
  14. Tse H.F., Ho J.C., Choi S.W., Lee Y.K., Butler A.W., Ng K.M., Siu C.W., Simpson M.A., Lai W.H., Chan Y.C., Au K.W., Zhang J., Lay K.W., Esteban M.A., Nicholls J.M., Colman A., Sham P.C. Patient-specific induced-pluripotent stem cells-derived cardiomyocytes recapitulate the pathogenic phenotypes of dilated cardiomyopathy due to a novel DES mutation identified by whole exome sequencing // Hum. Mol. Genet. 2013. Vol. 22. № 7. P. 1395–403.
  15. Han L., Li Y., Tchao J., Kaplan A.D., Lin B., Li Y., Mich-Basso J., Lis A., Hassan N., London B., Bett G.C., Tobita K., Rasmusson R.L., Yang L. Study familial hypertrophic cardiomyopathy using patient-specific induced pluripotent stem cells // Cardiovasc. Res. 2014. Vol. 104. № 2. P. 258–69.
  16. Lan F., Lee A.S., Liang P., Sanchez-Freire V., Nguyen P.K., Wang L., Han L., Yen M., Wang Y., Sun N., Abilez O.J., Hu S., Ebert A.D., Navarrete E.G., Simmons C.S., Wheeler M., Pruitt B., Lewis R., Yamaguchi Y., Ashley E.A., Bers D.M., Robbins R.C., Longaker M.T., Wu J.C. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells // Cell Stem Cell. 2013. Vol. 12. № 1. P. 101–13.
  17. Liang P., Lan F., Lee A.S., Gong T., Sanchez-Freire V., Wang Y., Diecke S., Sallam K., Knowles J.W., Wang P.J., Nguyen P.K., Bers D.M., Robbins R.C., Wu J.C. Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity // Circulation. 2013. Vol. 127. № 16. P. 1677–91.
  18. Lu J., Wei H., Wu J., Jamil M.F., Tan M.L., Adenan M.I., Wong P., Shim W. Evaluation of the cardiotoxicity of mitragynine and its analogues using human induced pluripotent stem cell-derived cardiomyocytes // PLoS One. 2014. Vol. 9. № 12. P. e115648.
  19. Awad M.M., Calkins H., Judge D.P. Mechanisms of disease: molecular genetics of arrhythmogenic right ventricular dysplasia/cardiomyopathy // Nat. Clin. Pract. Cardiovasc. Med. 2008. Vol. 5 № 5. P. 258–67.
  20. Caspi O., Huber I., Gepstein A., Arbel G., Maizels L., Boulos M., Gepstein L. Modeling of arrhythmogenic right ventricular cardiomyopathy with human induced pluripotent stem cells // Circ. Cardiovasc. Genet. 2013. Vol. 6. № 6. P. 557–68.
  21. Fatima A., Dittmann S., Kaifeng S., Xu G., Lehmann M., Linke M., Zechner U., Hennies H. C., Stork I., Rosenkranz S., Farr M., Milting H., Hescheler J., Horstkotte D., Šarić T. Derivation of induced pluripotent stem (iPS) cells from a patient with an arrhythmogenic right ventricular cardiomyopathy (ARVC) // J. Stem. Cells. Regen. Med. 2010. Vol. 6. № 2. P. 97.
  22. Kim C., Wong J., Wen J., Wang S., Wang C., Spiering S., Kan N.G., Forcales S., Puri P.L., Leone T.C., Marine J.E., Calkins H., Kelly D.P., Judge D.P., Chen H.S. Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs // Nature. 2013. Vol. 494. № 7435. P. 105–10.
  23. Hensley N., Dietrich J., Nyhan D., Mitter N., Yee M.S., Brady M. Hypertrophic cardiomyopathy: a review // Anesth. Analg. 2015. Vol. 120. № 3. P. 554–69.
  24. Houston B.A., Stevens G.R. Hypertrophic cardiomyopathy: a review // Clin. Med. Insights. Cardiol. 2014. Vol. 8. Suppl. 1. P. 53–65.
  25. Semsarian C., Ingles J., Maron M.S., , Maron B.J. New perspectives on the prevalence of hypertrophic cardiomyopathy // J. Am. Coll. Cardiol. 2015. Vol. 65. № 12. P. 1249–54.
  26. Carvajal-Vergara X., Sevilla A., D'Souza S.L., Ang Y.S., Schaniel C., Lee D.F., Yang L., Kaplan A.D., Adler E.D., Rozov R., Ge Y., Cohen N., Edelmann L.J., Chang B., Waghray A., Su J., Pardo S., Lichtenbelt K.D., Tartaglia M., Gelb B.D., Lemischka I.R. Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome // Nature. 2010. Vol. 465. № 7299. P. 808–12.
  27. Luk A., Ahn E., Soor G.S., Butany J. Dilated cardiomyopathy: a review // J. Clin. Pathol. 2009. Vol. 62. № 3. P. 219–25.
  28. Petretta M., Pirozzi F., Sasso L., Paglia A., Bonaduce D. Review and metaanalysis of the frequency of familial dilated cardiomyopathy // Am. J. Cardiol. 2011. Vol. 108. № 8. P. 1171–6.
  29. Hershberger R.E., Morales A., Siegfried J.D. Clinical and genetic issues in dilated cardiomyopathy: a review for genetics professionals // Genet. Med. 2010. Vol. 12. №11. P. 655–67.
  30. Siu C.W., Lee Y.K., Ho J.C., Lai W.H., Chan Y.C., Ng K.M., Wong L.Y., Au K.W., Lau Y.M., Zhang J., Lay K.W., Colman A., Tse H.F. Modeling of lamin A/C mutation premature cardiac aging using patient-specific induced pluripotent stem cells // Aging (Albany NY). 2012. Vol. 4. № 11. P. 803–22.
  31. Palau F. Friedreich's ataxia and frataxin: molecular genetics, evolution and pathogenesis (Review) // Int. J. Mol. Med. 2001. Vol. 7. № 6. P. 581–9.
  32. Albano L.M., Nishioka S.A., Moyses R.L., Wagenführ J., Bertola D., Sugayama S.M., Chong A.K. Friedreich's ataxia: cardiac evaluation of 25 patients with clinical diagnosis and literature review // Arq. Bras. Cardiol. 2002. Vol. 78. № 5. P. 444–51.
  33. Bourke T., Keane D. Friedreich's Ataxia: a review from a cardiology perspective // Ir. J. Med. Sci. 2011. Vol. 180. № 4. P. 799–805.
  34. Hick A., Wattenhofer-Donze M., Chintawar S., Tropel P., Simard J.P., Vaucamps N., Gall D., Lambot L., André C., Reutenauer L., Rai M., Teletin M., Messaddeq N., Schiffmann S.N., Viville S., Pearson C.E., Pandolfo M., Puccio H. Neurons and cardiomyocytes derived from induced pluripotent stem cells as a model for mitochondrial defects in Friedreich's ataxia // Dis Model Mech. 2013. Vol. 6. № 3. P. 608–21.
  35. Reynolds S. Successful management of Barth syndrome: a systematic review highlighting the importance of a flexible and multidisciplinary approach // J. Multidiscip. Health. 2015. Vol. 8. P. 345–58.
  36. Yen T.Y., Hwu W.L., Chien Y.H., Wu M.H., Lin M.T., Tsao L.Y., Hsieh W.S., Lee N.C. Acute metabolic decompensation and sudden death in Barth syndrome: report of a family and a literature review // Eur. J. Pediatr. 2008. Vol. 167. № 8. P. 941–4.
  37. Dudek J., Cheng I.F., Balleininger M., Vazd F.M., Streckfuss-Bömekeb K., Hübscherb D., Vukotica M., Wandersd R.J.A., Rehlinga P., Guan K. Cardiolipin deficiency affects respiratory chain function and organization in an induced pluripotent stem cell model of Barth syndrome // Stem Cell Res. 2013. Vol. 11. № 2. P. 806–19.
  38. Wang G., McCain M.L., Yang L., He A., Pasqualini F.S., Agarwal A., Yuan H., Jiang D., Zhang D., Zangi L., Geva J., Roberts A.E., Ma Q., Ding J., Chen J., Wang D.Z., Li K., Wang J., Wanders R.J., Kulik W., Vaz F.M., Laflamme M.A., Murry C.E., Chien K.R., Kelley R.I., Church G.M., Parker K.K., Pu W.T. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies // Nat. Med. 2014. Vol. 20. № 6. P. 616–23.
  39. Taglia A., Picillo E., D'Ambrosio P., Cecio M.R., Viggiano E., Politano L. Genetic counseling in Pompe disease // Acta Myol. 2011. Vol. 30. № 3. P. 179–81.
  40. Huang H.P., Chen P.H., Hwu W.L., Chuang C.Y., Chien Y.H., Stone L., Chien C.L., Li L.T., Chiang S.C., Chen H.F., Ho H.N., Chen C.H., Kuo H.C. Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification // Hum. Mol. Genet. 2011. Vol. 20. № 24. P. 4851–64.
  41. Merla G., Brunetti-Pierri N., Piccolo P., Micale L., Loviglio M.N. Supravalvular aortic stenosis: elastin arteriopathy // Circ. Cardiovasc. Genet. 2012. Vol. 5 № 6. P. 692–6.
  42. Morris C.A. Genetic aspects of supravalvular aortic stenosis // Curr. Opin. Cardiol. 1998. Vol. 13. № 3. P. 214–9.
  43. Samanich J.M., Levin T.L., Berdon W.E. The clinical and genetic distinction between familial supravalvular aortic stenosis (Eisenberg syndrome) and Williams-Beuren syndrome // Pediatr. Radiol. 2012. Vol. 42. № 10. P. 1269.
  44. Urban Z., Riazi S., Seidl T.L., Katahira J., Smoot L.B., Chitayat D., Boyd C.D., Hinek A. Connection between elastin haploinsufficiency and increased cell proliferation in patients with supravalvular aortic stenosis and Williams-Beuren syndrome // Am. J. Hum. Genet. 2002. Vol. 71. № 1. P. 30–44.
  45. Ge X., Ren Y., Bartulos O., Lee M.Y., Yue Z., Kim K.Y., Li W., Amos P.J., Bozkulak E.C., Iyer A., Zheng W., Zhao H., Martin K.A., Kotton D.N., Tellides G., Park I.H., Yue L., Qyang Y. Modeling supravalvular aortic stenosis syndrome with human induced pluripotent stem cells // Circulation. 2012. Vol. 126. № 14. P. 1695–704.
  46. Kinnear C., Chang W.Y., Khattak S., Hinek A., Thompson T., de Carvalho Rodrigues D., Kennedy K., Mahmut N., Pasceri P., Stanford W.L., Ellis J., Mital S. Modeling and rescue of the vascular phenotype of Williams-Beuren syndrome in patient induced pluripotent stem cells // Stem Cells Transl. Med. 2013. Vol. 2. № 1. P. 2–15.
  47. Communal C., Singh K., Pimentel D.R., Colucci W.S. Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway // Circulation. 1998. Vol. 98. № 13. P. 1329–34.
  48. Wu C.F., Bishopric N.H., Pratt R.E. Atrial natriuretic peptide induces apoptosis in neonatal rat cardiac myocytes // J. Biol. Chem. 1997. Vol. 272. № 23. P. 14860–6.