Том 19 № 4-2: Клеточные технологии в кардиологии (спецвыпуск)
ОБЗОРЫ

Гетерогенность клеток эндотелия

М. Живень
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук, 630090, Новосибирск, пр-т академика Лаврентьева, 10; Институт химической биологии и фундаментальной медицины генетики Сибирского отделения Российской академии наук, 630090, Новосибирск, пр-т академика Лаврентьева, 8; Новосибирский научно-исследовательский институт патологии кровообращения имени академика Е.Н. Мешалкина Министерства здравоохранения Российской Федерации, 630055, Новосибирск, ул. Речкуновская, 15
И. Захарова
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук, 630090, Новосибирск, пр-т академика Лаврентьева, 10; Институт химической биологии и фундаментальной медицины генетики Сибирского отделения Российской академии наук, 630090, Новосибирск, пр-т академика Лаврентьева, 8; Новосибирский научно-исследовательский институт патологии кровообращения имени академика Е.Н. Мешалкина Министерства здравоохранения Российской Федерации, 630055, Новосибирск, ул. Речкуновская, 15
А. Шевченко
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук, 630090, Новосибирск, пр-т академика Лаврентьева, 10; Институт химической биологии и фундаментальной медицины генетики Сибирского отделения Российской академии наук, 630090, Новосибирск, пр-т академика Лаврентьева, 8; Новосибирский научно-исследовательский институт патологии кровообращения имени академика Е.Н. Мешалкина Министерства здравоохранения Российской Федерации, 630055, Новосибирск, ул. Речкуновская, 15
Е. Покушалов
Новосибирский научно-исследовательский институт патологии кровообращения имени академика Е.Н. Мешалкина Министерства здравоохранения Российской Федерации, 630055, Новосибирск, ул. Речкуновская, 15
С. Закиян
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук, 630090, Новосибирск, пр-т академика Лаврентьева, 10; Институт химической биологии и фундаментальной медицины генетики Сибирского отделения Российской академии наук, 630090, Новосибирск, пр-т академика Лаврентьева, 8; Новосибирский научно-исследовательский институт патологии кровообращения имени академика Е.Н. Мешалкина Министерства здравоохранения Российской Федерации, 630055, Новосибирск, ул. Речкуновская, 15; Новосибирский национальный исследовательский государственный университет, 630090, Новосибирск, ул. Пирогова, 2

Опубликован 14.01.2016

Ключевые слова

  • Эндотелиальные клетки,
  • Васкулогенез,
  • Дифференцировка,
  • Дифференциальная экспрессия генов

Как цитировать

Живень, М., Захарова, И., Шевченко, А., Покушалов, Е., & Закиян, С. (2016). Гетерогенность клеток эндотелия. Патология кровообращения и кардиохирургия, 19(4-2), 104–112. https://doi.org/10.21688/1681-3472-2015-4-2-104-112

Аннотация

Эндотелиальные клетки, образующие у позвоночных внутренний слой сосудов, обладают важными функциями, необходимыми для нормальной жизнедеятельности организма. В обзоре суммированы сведения о формировании эндотелиальных клеток в онтогенезе, их артериальной, венозной и лимфатической дифференцировке, а также дальнейшей специализации в зависимости от клеточного микроокружения конкретного органа или ткани. Понимание различий в морфологии, ультраструктуре, экспрессии генов и функциях различных субпопуляций эндотелиальных клеток имеет большое значение в регенеративной медицине для протезирования сосудов, лечения различных эндотелиальных дисфункций, реваскуляризации и регенерации ишемизированных органов.

Библиографические ссылки

  1. Flamme I., Frölich T., Risau W. Molecular mechanisms of vasculogenesis and embryonic angiogenesis // J. Cell. Physiol. 1997. Vol. 173. № 2. P. 206–10.
    Patan S. Vasculogenesis and angiogenesis // Cancer Treat. Res. 2004. Vol. 117. P. 3–32.
    Adams R.H., Wilkinson G.A., Weiss C., Diella F., Gale N.W., Deutsch U., Risau W., Klein R. Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis // Genes Dev. 1999. Vol. 13. № 3. P. 295–306.
    Wang H.U., Chen Z.F., Anderson D.J. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4 // Cell. 1998. Vol. 93. № 5. P. 741–53.
    Oliver G., Alitalo K. The lymphatic vasculature: recent progress and paradigms // Annu. Rev. Cell Dev. Biol. 2005. Vol. 21. P. 457–83.
    Oliver G., Srinivasan R.S. Lymphatic vasculature development: current concepts // Ann. N. Y. Acad. Sci. 2008. Vol. 1131. P. 75–81.
    Vondenhoff M.F., van de Pavert S.A., Dillard M.E., Greuter M., Goverse G., Oliver G., Mebius R.E. Lymph sacs are not required for the initiation of lymph node formation // Development. 2009. Vol. 136. № 1. P. 29–34.
    Aird W.C. Endothelial cell heterogeneity // Cold Spring Harb. Perspect. Med. 2012. Vol. 2. № 1. P. a006429.
    Marom K., Levy V., Pillemer G., Fainsod A. Temporal analysis of the early BMP functions identifies distinct anti-organizer and mesoderm patterning phases // Dev. Biol. 2005. Vol. 282. № 2. P. 442–54.
    Winnier G., Blessing M., Labosky P.A., Hogan B.L. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse // Genes Dev. 1995. Vol. 9. № 17. P. 2105–16.
    Yamaguchi T.P., Harpal K., Henkemeyer M., Rossant J. fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation // Genes Dev. 1994. Vol. 8. № 24. P. 3032–44.
    Huber T. L., Zhou Y., Mead P.E., Zon L.I. Cooperative effects of growth factors involved in the induction of hematopoietic mesoderm // Blood. 1998. Vol. 92. № 11. P. 4128–37.
    Kelly M.A., Hirschi K.K. Signaling hierarchy regulating human endothelial cell development // Arterioscler. Thromb. Vasc. Biol. 2009. Vol. 29. № 5. P. 718–24.
    Breier G., Clauss M., Risau W. Coordinate expression of vascular endothelial growth factor receptor-1 (flt-1) and its ligand suggests a paracrine regulation of murine vascular development // Dev. Dyn. 1995. Vol. 204. № 3. P. 228–39.
    Hiratsuka S., Kataoka Y., Nakao K., Nakamura K., Morikawa S., Tanaka S., Katsuki M., Maru Y., Shibuya M. Vascular endothelial growth factor A (VEGF-A) is involved in guidance of VEGF receptor-positive cells to the anterior portion of early embryos // Mol. Cell. Biol., 2005. Vol. 25. № 1. P. 355–63.
    Ferrara N., Carver-Moore K., Chen H., Dowd M., Lu L., O’Shea K.S., Powell-Braxton L., Hillan K.J., Moore M.W. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene // Nature. 1996. Vol. 380. № 6573. P. 439–42.
    Carmeliet P., Ferreira V., Breier G., Pollefeyt S., Kieckens L., Gertsenstein M., Fahrig M., Vandenhoeck A., Harpal K., Eberhardt C., Declercq C., Pawling J., Moons L., Collen D., Risau W., Nagy A. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele // Nature. 1996. Vol. 380. № 6573. P.  435–9.
    Yang J.T., Bader B.L., Kreidberg J.A., Ullman-Culleré M., Trevithick J.E., Hynes R.O. Overlapping and independent functions of fibronectin receptor integrins in early mesodermal development // Dev. Biol. 1999. Vol. 215. № 2. P. 264–77.
    Rupp P.A., Little C.D. Integrins in Vascular Development // Circ. Res. 2001. Vol. 89. № 7. P. 566–572.
    Friedlander M., Brooks P.C., Shaffer R.W., Kincaid C.M., Varner J.A., Cheresh D.A. Definition of two angiogenic pathways by distinct alpha v integrins // Science. 1995. Vol. 270. № 5241. P. 1500–2.
    Brooks P.C., Strömblad S., Sanders L.C., von Schalscha T.L., Aimes R.T., Stetler-Stevenson W.G., Quigley J.P., Cheresh D.A. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3 // Cell. 1996. Vol. 85. № 5. P. 683–93.
    George E.L., Georges-Labouesse E.N., Patel-King R.S., Rayburn H., Hynes R.O. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin // Development. 1993. Vol. 119. № 4. P. 1079–91.
    Ferdous A., Caprioli A., Iacovino M., Martin C.M., Morris J., Richardson J.A., Latif S., Hammer R.E., Harvey R.P., Olson E.N., Kyba M., Garry D.J. Nkx2-5 transactivates the Ets-related protein 71 gene and specifies an endothelial/endocardial fate in the developing embryo // Proc. Natl. Acad. Sci. U. S. A. 2009. Vol. 106. № 3. P. 814–9.
    Lee D., Park C., Lee H., Lugus J.J., Kim S.H., Arentson E., Chung Y.S., Gomez G., Kyba M., Lin S., Janknecht R., Lim D.-S., Choi K. ER71 acts downstream of BMP, Notch, and Wnt signaling in blood and vessel progenitor specification. Cell Stem Cell. 2008. Vol. 2. № 5. P. 497–507.
    Sumanas S., Gomez G., Zhao Y., Park C., Choi K., Lin S. Interplay among Etsrp/ER71, Scl, and Alk8 signaling controls endothelial and myeloid cell formation // Blood. 2008. Vol. 111. № 9. P. 4500–10.
    De Val S., Chi N.C., Meadows S.M., Minovitsky S., Anderson J.P., Harris I.S., Ehlers M.L., Agarwal P., Visel A., Xu S.-M., Pennacchio L.A., Dubchak I., Krieg P.A., Stainier D.Y.R., Black B.L. Combinatorial regulation of endothelial gene expression by ets and forkhead transcription factors // Cell. 2008. Vol. 135. № 6. P. 1053–64.
    Lawson N.D., Vogel A.M., Weinstein B.M. Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation // Dev. Cell. 2002. Vol. 3. № 1. P. 127–36.
    Gu C., Rodriguez E.R., Reimert D.V., Shu T., Fritzsch B., Richards L.J., Kolodkin A.L., Ginty D.D. Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development // Dev. Cell. 2003. Vol. 5. № 1. P. 45–57.
    Hayashi H., Kume T. Foxc transcription factors directly regulate Dll4 and Hey2 expression by interacting with the VEGF-Notch signaling pathways in endothelial cells // PLoS One. 2008. Vol. 3. № 6. P. e2401.
    Lawson N.D., Scheer N., Pham V.N., Kim C.-H., Chitnis A.B., Campos-Ortega J.A., Weinstein B.M. Notch signaling is required for arterial-venous differentiation during embryonic vascular development // Development. 2001. Vol. 128. № 19. P. 3675–3683.
    Seo S., Fujita H., Nakano A., Kang M., Duarte A., Kume T. The forkhead transcription factors, Foxc1 and Foxc2, are required for arterial specification and lymphatic sprouting during vascular development // Dev. Biol. 2006. Vol. 294. № 2. P. 458–70.
    Lanner F., Sohl M., Farnebo F. Functional arterial and venous fate is determined by graded VEGF signaling and notch status during embryonic stem cell differentiation // Arterioscler. Thromb. Vasc. Biol. 2007. Vol. 27. № 3. P. 487–93.
    Zhang G., Zhou J., Fan Q., Zheng Z., Zhang F., Liu X., Hu S. Arterial-venous endothelial cell fate is related to vascular endothelial growth factor and Notch status during human bone mesenchymal stem cell differentiation // FEBS Lett. 2008. Vol. 582. № 19. P. 2957–64.
    Yamamizu K., Matsunaga T., Uosaki H., Fukushima H., Katayama S., Hiraoka-Kanie M., Mitani K., Yamashita J.K. Convergence of Notch and beta-catenin signaling induces arterial fate in vascular progenitors // J. Cell Biol. 2010. Vol. 189. № 2. P. 325–38.
    Corada M., Nyqvist D., Orsenigo F., Caprini A., Giampietro C., Taketo M.M., Iruela-Arispe M.L., Adams R.H., Dejana E. The Wnt/beta-catenin pathway modulates vascular remodeling and specification by upregulating Dll4/Notch signaling // Dev. Cell. 2010. Vol. 18. № 6. P. 938–49.
    You L.-R., Lin F.-J., Lee C.T., DeMayo F.J., Tsai M.-J., Tsai S.Y. Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity // Nature. 2005. Vol. 435. № 7038. P. 98–104.
    Kruse S.W., Suino-Powell K., Zhou X.E., Kretschman J.E., Reynolds R., Vonrhein C., Xu Y., Wang L., Tsai S.Y., Tsai M.-J., Xu H.E. “dentification of COUP-TFII orphan nuclear receptor as a retinoic acid-activated receptor // PLoS Biol. 2008. Vol. 6. № 9. P. e227.
    Dekker R.J., van Soest S., Fontijn R.D., Salamanca S., de Groot P.G., VanBavel E., Pannekoek H., Horrevoets A.J.G. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Krüppel-like factor (KLF2) // Blood. 2002. Vol. 100. № 5. P. 1689–98.
    Kim M., Kim S., Lim J.H., Lee C., Choi H.C., Woo C.-H. Laminar flow activation of ERK5 protein in vascular endothelium leads to atheroprotective effect via NF-E2-related factor 2 (Nrf2) activation // J. Biol. Chem. 2012. Vol. 287. № 48. P. 40722–31.
    Topper J.N., Cai J., Falb D., Gimbrone M.A. Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress // Proc. Natl. Acad. Sci. U. S. A. 1996. Vol. 93. № 19. P. 10417–22.
    François M., Caprini A., Hosking B., Orsenigo F., Wilhelm D., Browne C., Paavonen K., Karnezis T., Shayan R., Downes M., Davidson T., Tutt D., Cheah K.S.E., Stacker S.A., Muscat G.E.O., Achen M.G., Dejana E., Koopman P. Sox18 induces development of the lymphatic vasculature in mice // Nature. 2008. Vol. 456. № 7222. P. 643–7.
    Kiefer F., Adams R.H. Lymphatic endothelial differentiation: start out with Sox-carry on with Prox // Genome Biol. 2008. Vol. 9. № 12. P. 243.
    Kume T. Specification of arterial, venous, and lymphatic endothelial cells during embryonic development // Histol. Histopathol. 2010. Vol. 25. № 5. P. 637–46.
    Kazenwadel J., Michael M.Z., Harvey N.L. Prox1 expression is negatively regulated by miR-181 in endothelial cells // Blood. 2010. Vol. 116. № 13. P. 2395–401.
    Pedrioli D.M.L., Karpanen T., Dabouras V., Jurisic G., van de Hoek G., Shin J.W., Marino D., Kälin R.E., Leidel S., Cinelli P., Schulte-Merker S., Brändli A.W., Detmar M. miR-31 functions as a negative regulator of lymphatic vascular lineage-specific differentiation in vitro and vascular development in vivo // Mol. Cell. Biol. 2010. Vol. 30. № 14. P. 3620–34.
    Karkkainen M.J., Haiko P., Sainio K., Partanen J., Taipale J., Petrova T.V., Jeltsch M., Jackson D.G., Talikka M., Rauvala H., Betsholtz C., Alitalo K. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins // Nat. Immunol. 2004. Vol. 5. № 1. P. 74–80.
    Irrthum A., Karkkainen M.J., Devriendt K., Alitalo K., Vikkula M. Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase // Am. J. Hum. Genet. 2000. Vol. 67. № 2. P. 295–301.
    Facucho-Oliveira J., Bento M., Belo J.-A. Ccbe1 expression marks the cardiac and lymphatic progenitor lineages during early stages of mouse development // Int. J. Dev. Biol. 2011. Vol. 55. № 10–12. P. 1007–14.
    Bos F.L., Caunt M., Peterson-Maduro J., Planas-Paz L., Kowalski J., Karpanen T., van Impel A., Tong R., Ernst J.A., Korving J., van Es J.H., Lammert E., Duckers H.J., Schulte-Merker S. CCBE1 is essential for mammalian lymphatic vascular development and enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo // Circ. Res. 2011. Vol. 109. № 5. P. 486–91.
    Hogan B.M., Bos F.L., Bussmann J., Witte M., Chi N.C., Duckers H.J., Schulte-Merker S. Ccbe1 is required for embryonic lymphangiogenesis and venous sprouting // Nat. Genet. 2009. Vol. 41. № 4. P. 396–8.
    Matsui K., Breitender-Geleff S., Soleiman A., Kowalski H., Kerjaschki D., Podoplanin, a novel 43-kDa membrane protein, controls the shape of podocytes // Nephrol. Dial. Transplant. 1999. Vol. 14. Suppl. 1. P. 9–11.
    Schacht V., Ramirez M.I., Hong Y.-K., Hirakawa S., Feng D., Harvey N., Williams M., Dvorak A.M., Dvorak H.F., Oliver G., Detmar M. T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema // EMBO J. 2003. Vol. 22. № 14. P. 3546–56.
    Jackson D.G. Biology of the lymphatic marker LYVE-1 and applications in research into lymphatic trafficking and lymphangiogenesis // APMIS. 2004. Vol. 112. № 7–8. P. 526–38.
    Mishima K., Watabe T., Saito A., Yoshimatsu Y., Imaizumi N., Masui S., Hirashima M., Morisada T., Oike Y., Araie M., Niwa H., Kubo H., Suda T., Miyazono K. Prox1 induces lymphatic endothelial differentiation via integrin alpha9 and other signaling cascades // Mol. Biol. Cell. 2007. Vol. 18. № 4. P. 1421–9.
    Danussi C., Del Bel Belluz L., Pivetta E., Modica T.M.E., Muro A., Wassermann B., Doliana R., Sabatelli P., Colombatti A., Spessotto P. EMILIN1/α9β1 integrin interaction is crucial in lymphatic valve formation and maintenance // Mol. Cell. Biol. 2013. Vol. 33. № 22. P. 4381–94.
    Zlokovic B.V. The blood-brain barrier in health and chronic neurodegenerative disorders // Neuron. 2008. Vol. 57. № 2. P. 178–201.
    Haseloff R.F., Dithmer S., Winkler L., Wolburg H., Blasig I.E. Transmembrane proteins of the tight junctions at the blood-brain barrier: structural and functional aspects // Semin. Cell Dev. Biol. 2015. Vol. 38. P. 16–25.
    Brutsaert D.L. Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity // Physiol. Rev. 2003. Vol. 83. № 1. P. 59–115.
    Aird W.C. Phenotypic heterogeneity of the endothelium: II. Representative vascular beds // Circ. Res. 2007. Vol. 100. № 2. P. 174–90.
    Ioannidou S., Deinhardt K., Miotla J., Bradley J., Cheung E., Samuelsson S., Ng Y.-S., Shima D.T. An in vitro assay reveals a role for the diaphragm protein PV-1 in endothelial fenestra morphogenesis // Proc. Natl. Acad. Sci. U. S. A. 2006. Vol. 103. № 45. P. 16770–5.
    Stan R.V., Tkachenko E., Niesman I.R. PV1 is a key structural component for the formation of the stomatal and fenestral diaphragms // Mol. Biol. Cell. 2004. Vol. 15. № 8. P. 3615–30.
    LeCouter J., Kowalski J., Foster J., Hass P., Zhang Z., Dillard-Telm L., Frantz G., Rangell L., DeGuzman L., Keller G.A., Peale F., Gurney A., Hillan K.J., Ferrara N. Identification of an angiogenic mitogen selective for endocrine gland endothelium // Nature. 2001. Vol. 412. № 6850. P. 877–84.
    Oda M., Yokomori H., Han J.-Y. Regulatory mechanisms of hepatic microcirculation // Clin. Hemorheol. Microcirc. 2003. Vol. 29. № 3–4. P. 167–82.
    DeLeve L.D. Liver sinusoidal endothelial cells and liver regeneration // J. Clin. Invest. 2013. Vol. 123. № 5. P. 1861–6.
    Ding B.-S., Nolan D.J., Guo P., Babazadeh A.O., Cao Z., Rosenwaks Z., Crystal R.G., Simons M., Sato T.N., Worgall S., Shido K., Rabbany S.Y., Rafii S. Endothelial-derived angiocrine signals induce and sustain regenerative lung alveolarization // Cell. 2011. Vol. 147. № 3. P. 539–53.
    Jia X., Lü H., Li C., Feng G., Yao X., Mao L., Ke T., Che Y., Xu Y., Li Z., Kong D. Human embryonic stem cells-derived endothelial cell therapy facilitates kidney regeneration by stimulating renal resident stem cell proliferation in acute kidney injury // Chinese Sci. Bull. 2013. Vol. 58. № 23. P. 2820–2827.
    Talavera-Adame D., Dafoe D.C. Endothelium-derived essential signals involved in pancreas organogenesis // World J. Exp. Med. 2015. Vol. 5. № 2. P. 40–9.
    Ramasamy S.K., Kusumbe A.P., Adams R.H. Regulation of tissue morphogenesis by endothelial cell-derived signals // Trends Cell Biol. 2015. Vol. 25. № 3. P. 148–57.
    Nolan D.J., Ginsberg M., Israely E., Palikuqi B., Poulos M.G., James D., Ding B.-S., Schachterle W., Liu Y., Rosenwaks Z., Butler J.M., Xiang J., Rafii A., Shido K., Rabbany S.Y., Elemento O., Rafii S. Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration // Dev. Cell. 2013. Vol. 26. № 2. P. 204–19.
    Rufaihah A.J., Huang N.F., Kim J., Herold J., Volz K.S., Park T.S., Lee J.C., Zambidis E.T., Reijo-Pera R., Cooke J.P. Human induced pluripotent stem cell-derived endothelial cells exhibit functional heterogeneity // Am. J. Transl. Res. 2013. Vol. 5. № 1. P. 21–35.
    Yamahara K., Sone M., Itoh H., Yamashita J.K., Yurugi-Kobayashi T., Homma K., Chao T.-H., Miyashita K., Park K., Oyamada N., Sawada N., Taura D., Fukunaga Y., Tamura N., Nakao K. Augmentation of neovascularization [corrected] in hindlimb ischemia by combined transplantation of human embryonic stem cells-derived endothelial and mural cells // PLoS One. 2008. Vol. 3. № 2. P. e1666.