Том 23 № 3 (2019)
ОБЗОРЫ

Роль рецепторов PD-1 и PD-L1 в развитии системного воспалительного ответа и методы иммуноадъювантной терапии

М. Ханова
Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний, Кемерово
Bio
Е. Григорьев
Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний, Кемерово

Опубликован 27.11.2019

Ключевые слова

  • индуцированная иммуносупрессия,
  • истощение Т-лимфоцитов,
  • системный воспалительный ответ,
  • PD-1,
  • анти- PD-1-терапия

Как цитировать

Ханова, М., & Григорьев, Е. (2019). Роль рецепторов PD-1 и PD-L1 в развитии системного воспалительного ответа и методы иммуноадъювантной терапии. Патология кровообращения и кардиохирургия, 23(3), 76–83. https://doi.org/10.21688/1681-3472-2019-3-76-83

Аннотация

Методы поддерживающей терапии позволяют пациентам с травмой или сепсисом преодолеть начальную гипервоспалительную стадию, за которой следует иммуносупрессия. Критичность индуцированной системным воспалительным ответом иммуносупрессии заключается в повышенной восприимчивости пациента к вторичным нозокомиальным инфекциям и высокой вероятности прогрессирования в полиорганную недостаточность. Активно исследуется роль рецептора PD-1 в формировании индуцированной иммуносупрессии при системном воспалительном ответе. Одним из механизмов иммуносупрессии является истощение Т-клеток, опосредованное ингибирующим рецептором PD-1. Путь PD-1/PD-L1 выполняет регуляцию аутоиммунитета, опухолевого иммунитета, трансплантационного иммунитета, аллергии, иммунопатологии.
В данном обзоре литературы обобщены результаты экспериментальных работ, демонстрирующие, что блокирование взаимодействия PD-1 с его лигандом PD-L1 устраняет дисфункцию Т-клеток и улучшает выживаемость при сепсисе на животных моделях. Описан один клинический случай применения анти-PD-1-терапии для лечения критического пациента с зафиксированным улучшением на фоне терапии. Также оцениваются нежелательные побочные эффекты такой терапии. Тем временем в клинику введены ингибиторы иммунных контрольных точек для лечения некоторых форм рака. Тенденции увеличения экспрессии рецептора PD-1 при системном воспалительном ответе рассматриваются как возможный прогностический маркер. Цель данного обзора — оценить состояние проблемы лечения и выживания пациентов с индуцированной системным воспалительным ответом иммуносупрессией с позиции иммунотерапии блокирования контрольных точек PD-1/PD-L1.
Для обзора использованы соответствующие тематике статьи, найденные в базах данных PubMed, PMC по ключевым словам: PD-1; anti-programmed cell death-1; immunosuppressive; system inflammatory response, sepsis.

Поступила в редакцию 2 августа 2019 г. Принята к печати 30 октября 2019 г.

Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов.

Финансирование
Работа выполнена в рамках научного проекта поддержки ведущих научных школ Российской Федерации в форме грантов Президента Российской Федерации (НШ-2696.2018.7) «Прогнозирование и превентивная интенсивная терапия персистирующей полиорганной недостаточности».

Библиографические ссылки

  1. Bone R.C. Immunologic dissonance: a continuing evolution in our understanding of the systemic inflammatory response syndrome (SIRS) and the multiple organ dysfunction syndrome (MODS). Ann Intern Med. 1996;125(8):680-7. PMID: 8849154. https://doi.org/10.7326/0003-4819-125-8-199610150-00009
  2. Григорьев Е.В., Шукевич Д.Л., Плотников Г.П., Кудрявцев А.Н., Радивилко А.С. Неудачи интенсивного лечения полиорганной недостаточности: патофизиология и потребность в персонификации (обзор литературы). Вестник интенсивной терапии имени А.И. Салтанова. 2019;2:48-57. https://doi.org/10.21320/1818-474X-2019-2-48-57 [Grigoryev E.V., Shukevich D.L,. Plotnikov G.P., Kudryavtsev A.N., Radivilko A.S. Failures of intensive treatment of multiple organ failure: pathophysiology and the need for personalization. Alexander Saltanov Intensive Care Herald. 2019;2:48-57. (In Russ.) https://doi.org/10.21320/1818-474X-2019-2-48-57]
  3. Григорьев Е.В., Матвеева В.Г., Шукевич Д.Л., Радивилко А.С., Великанова Е.А., Ханова М.Ю. Индуцированная иммуносупрессия в критических состояниях: диагностические возможности в клинической практике. Бюллетень сибирской медицины. 2019;18(1):18-29. https://doi.org/10.20538/1682-0363-2019-1-18-29 [Grigoryev E.V., Matveeva V.G., Shukevich D.L., Radivilko A.S., Velikanova E.A., Khanova M.Y. Induced immunosuppression in critical care: diagnostic opportunities in clinical practice. Bulletin of Siberian Medicine. 2019;18(1):18-29. (In Russ.) https://doi.org/10.20538/1682-0363-2019-1-18-29]
  4. Boomer J.S., To K., Chang K.C., Takasu O., Osborne D.F., Walton A.H., Bricker T.L., Jarman S.D. 2nd, Kreisel D., Krupnick A.S., Srivastava A., Swanson P.E., Green J.M., Hotchkiss R.S. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA. 2011;306(23):2594-2605. PMID: 22187279. https://doi.org/10.1001/jama.2011.1829
  5. Keir M.E., Butte M.J., Freeman G.J., Sharpe A.H. PD‐1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677-704. PMID: 18173375. https://doi.org/10.1146/annurev.immunol.26.021607.090331
  6. Fife B.T., Bluestone J.A. Control of peripheral T‐cell tolerance and autoimmunity via the CTLA‐4 and PD‐1 pathways. Immunol Rev. 2008;224:166–82. PMID: 18759926. https://doi.org/10.1111/j.1600-065X.2008.00662.x
  7. Wherry E.J., Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15(8):486-99. PMID: 26205583. https://doi.org/10.1038/nri3862
  8. Hotchkiss R.S., Monneret G., Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013;13(3):260-8. PMID: 23427891. https://doi.org/10.1016/S1473-3099(13)70001-X
  9. Hotchkiss R.S., Monneret G., Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013;13(12):862-74. PMID: 24232462. https://doi.org/10.1038/nri3552
  10. Greenwald R.J., Freeman G.J., Sharpe A.H. The B7 family revisited. Annu Rev Immunol. 2005;23:515-48. PMID: 15771580. https://doi.org/10.1146/annurev.immunol.23.021704.115611
  11. Greaves P., Gribben J.G. The role of B7 family molecules in hematologic malignancy. Blood. 2013;121(5):734-44. PMID: 23223433. https://doi.org/10.1182/blood-2012-10-385591
  12. Tsushima F., Yao S., Shin T., Flies A., Flies S., Xu H., Tamada K., Pardoll D.M., Chen L. Interaction between B7-H1 and PD-1 determines initiation and reversal of T-cell anergy. Blood. 2007;110(1):180-5. PMID: 17289811. https://doi.org/10.1182/blood-2006-11-060087
  13. Fife B.T., Pauken K.E., Eagar T.N, Obu T., Wu J., Tang Q., Azuma M., Krummel M.F., Bluestone J.A. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat Immunol. 2009;10(11):1185-92. PMID: 19783989. https://doi.org/10.1038/ni.1790
  14. Agata Y., Kawasaki A., Nishimura H., Ishida Y., Tsubata T., Yagita H., Honjo T. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol. 1996;8(5):765-72. PMID: 8671665. https://doi.org/10.1093/intimm/8.5.765
  15. Yamazaki T., Akiba H., Iwai H., Matsuda H., Aoki M., Tanno Y., Shin T., Tsuchiya H., Pardoll D.M., Okumura K., Azuma M., Yagita H. Expression of programmed death 1 ligands by murine T cells and APC. J Immunol. 2002;169(10):5538-45. PMID: 12421930. https://doi.org/10.4049/jimmunol.169.10.5538
  16. Sharpe A.H., Wherry E.J., Ahmed R., Freeman G.J. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol. 2007;8(3):239-45. PMID: 17304234. https://doi.org/10.1038/ni1443
  17. Kinter A.L., Godbout E.J., McNally J.P., Sereti I., Roby G.A., O'Shea M.A., Fauci A.S. The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands. J Immunol. 2008;181(10):6738-46. PMID: 18981091. https://doi.org/10.4049/jimmunol.181.10.6738
  18. Blattman J.N., Greenberg P.D. PD‐1 blockade: rescue from a near‐death experience. Nat Immunol. 2006;7(3):227-8. PMID: 16482167. https://doi.org/10.1038/ni0306-227
  19. Selenko-Gebauer N., Majdic O., Szekeres A., Höfler G., Guthann E., Korthäuer U., Zlabinger G., Steinberger P., Pickl W.F., Stockinger H., Knapp W., Stöckl J. B7-H1 (programmed death-1 ligand) on dendritic cells is involved in the induction and maintenance of T cell anergy. J Immunol. 2003;17(7):3637-44. PMID: 12646628. https://doi.org/10.4049/jimmunol.170.7.3637
  20. Huang X., Venet F., Wang Y.L., Lepape A., Yuan Z., Chen Y., Swan R., Kherouf H., Monneret G., Chung C.S., Ayala A. PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis. Proc Natl Acad Sci USA. 2009;106(15):6303-8. PMID: 19332785. https://doi.org/10.1073/pnas.0809422106
  21. Huang X., Chen Y., Chung C.S., Yuan Z., Monaghan S.F., Wang F., Ayala A. Identification of B7-H1 as a novel mediator of the innate immune/proinflammatory response as well as a possible myeloid cell prognostic biomarker in sepsis. J Immunol. 2014;192(3):1091-9. PMID: 24379123. https://doi.org/10.4049/jimmunol.1302252
  22. Tomino A., Tsuda M., Aoki R., Kajita Y., Hashiba M., Terajima T., Kano H., Takeyama N. Increased PD-1 expression and altered T cell repertoire diversity predict mortality in patients with septic shock: a preliminary study. PLoS One. 2017;12(1):e0169653. PMID: 28072859. https://doi.org/10.1371/journal.pone.0169653
  23. Shao R., Fang Y., Yu H., Zhao L., Jiang Z., Li C.S. Monocyte programmed death ligand-1 expression after 3-4 days of sepsis is associated with risk stratification and mortality in septic patients: a prospective cohort study. Crit Care. 2016;20(1):124. PMID: 27156867. https://doi.org/10.1186/s13054-016-1301-x
  24. Zhang Y., Zhou Y., Lou J., Li J., Bo L., Zhu K., Wan X., Deng X., Cai Z. PD-L1 blockade improves survival in experimental sepsis by inhibiting lymphocyte apoptosis and reversing monocyte dysfunction. Crit Care. 2010;14(6):R220. PMID: 21118528. https://doi.org/10.1186/cc9354
  25. Chang K., Svabek C., Vazquez-Guillamet C., Sato B., Rasche D., Wilson S., Robbins P., Ulbrandt N., Suzich J.A., Green J., Patera A.C., Blair W., Krishnan S.,. Hotchkiss R. Targeting the programmed cell death 1: programmed cell death ligand 1 pathway reverses T cell exhaustion in patients with sepsis. Crit Care. 2014;18(1):R3. PMID: 24387680. https://doi.org/10.1186/cc13176
  26. Grimaldi D., Pradier O., Hotchkiss R.S., Vincent J.L. Nivolumab plus interferon-gamma in the treatment of intractable mucormycosis. Lancet Infect Dis. 2017;17(1):18. PMID: 27998559. https://doi.org/10.1016/S1473-3099(16)30541-2
  27. Thampy L.K., Remy K.E., Walton A.H., Hong Z., Liu K., Liu R., Yi V., Burnham C.D., Hotchkiss R.S. Restoration of T cell function in multi-drug resistant bacterial sepsis after interleukin-7, anti-PD-L1, and OX-40 administration. PLoS One. 2018;13(6):e0199497. PMID: 29944697. https://doi.org/10.1371/journal.pone.0199497
  28. Guignant C., Lepape A., Huang X., Kherouf H., Denis L., Poitevin F., Malcus C., Chéron A., Allaouchiche B., Gueyffier F., Ayala A., Monneret G., Venet F. Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients. Crit Care. 2011;15(2):R99. PMID: 21418617. https://doi.org/10.1186/cc10112
  29. Brahmamdam P., Inoue S., Unsinger J., Chang K.C., McDunn J.E., Hotchkiss R.S. Delayed administration of anti-PD-1 antibody reverses immune dysfunction and improves survival during sepsis. J Leukoc Biol. 2010;88(2):233-40. PMID: 20483923. https://doi.org/10.1189/jlb.0110037
  30. Shindo Y., McDonough J.S., Chang K.C., Ramachandra M., Sasikumar P.G., Hotchkiss R.S. Anti-PD-L1 peptide improves survival in sepsis. J Surg Res. 2017;208:33-9. PMID: 27993215. https://doi.org/10.1016/j.jss.2016.08.099
  31. Chang K.C., Burnham C.A., Compton S.M., Rasche D.P., Mazuski R.J., McDonough J.S., Unsinger J., Korman A.J., Green J.M., Hotchkiss R.S. Blockade of the negative co-stimulatory molecules PD-1 and CTLA-4 improves survival in primary and secondary fungal sepsis. Crit Care. 2013;17(3):R85. PMID: 23663657. https://doi.org/10.1186/cc12711
  32. Shindo Y., Unsinger J., Burnham C.A., Green J.M., Hotchkiss R.S. Interleukin 7 and anti-programmed cell death 1 antibody have differing effects to reverse sepsis-induced immunosuppression. Shock. 2015;43(4):334-43. PMID: 25565644. https://doi.org/10.1097/SHK.0000000000000317
  33. West E.E., Jin H.T., Rasheed A.U., Penaloza-Macmaster P., Ha S.J., Tan W.G., Youngblood B., Freeman G.J., Smith K.A., Ahmed R. PD-L1 blockade synergizes with IL-2 therapy in reinvigorating exhausted T cells. J Clin Invest. 2013;123(6):2604-15. PMID: 23676462. https://doi.org/10.1172/JCI67008
  34. Topalian S.L., Hodi F.S., Brahmer J.R., Gettinger S.N., Smith D.C., McDermott D.F., Powderly J.D., Carvajal R.D., Sosman J.A., Atkins M.B., Leming P.D., Spigel D.R., Antonia S.J., Horn L., Drake C.G., Pardoll D.M., Chen L., Sharfman W.H., Anders R.A., Taube J.M., McMiller T.L., Xu H., Korman A.J., Jure-Kunkel M., Agrawal S., McDonald D., Kollia G.D., Gupta A., Wigginton J.M., Sznol M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443-54. PMID: 22658127. https://doi.org/10.1056/NEJMoa1200690
  35. Garon E.B., Rizvi N.A., Hui R., Leighl N., Balmanoukian A.S., Eder J.P., Patnaik A., Aggarwal C., Gubens M., Horn L., Carcereny E., Ahn M.J., Felip E., Lee J.S., Hellmann M.D., Hamid O., Goldman J.W., Soria J.C., Dolled-Filhart M., Rutledge R.Z., Zhang J., Lunceford J.K., Rangwala R., Lubiniecki G.M., Roach C., Emancipator K., Gandhi L., KEYNOTE-001 Investigators. Pembrolizumab for the treatment of non–small-cell lung cancer. N Engl J Med. 2015;372(21):2018-28. PMID: 25891174. https://doi.org/10.1056/NEJMoa1501824
  36. Ansell S.M., Lesokhin A.M., Borrello I., Halwani A., Scott E.C., Gutierrez M., Schuster S.J., Millenson M.M., Cattry D., Freeman G.J., Rodig S.J., Chapuy B., Ligon A.H., Zhu L., Grosso J.F., Kim S.Y., Timmerman J.M., Shipp M.A., Armand P. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N Engl J Med. 2015;372(4):311-39. PMID: 25482239. https://doi.org/10.1056/NEJMoa1411087
  37. Santini F.C., Rudin C.M. Atezolizumab for the treatment of non-small cell lung cancer. Expert Rev Clin Pharmacol. 2017;10(9):935-45. PMID: 28714780. https://doi.org/10.1080/17512433.2017.1356717
  38. Hotchkiss R.S., Colston E., Yende S., Angus D.C., Moldawer L.L., Crouser E.D., Martin G.S., Coopersmith C.M., Brakenridge S., Mayr F.B., Park P.K., Ye J., Catlett I.M., Girgis I.G., Grasela D.M. Immune checkpoint inhibition in sepsis: a phase 1b randomized, placebo-controlled, single ascending dose study of antiprogrammed cell death-ligand 1 antibody (BMS-936559). Crit Care Med. 2019;47(5):632-42. PMID: 30747773. https://doi.org/10.1097/CCM.0000000000003685
  39. Nishimura H., Nose M., Hiai H., Minato N., Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999;11(2):141-51. PMID: 10485649. https://doi.org/10.1016/S1074-7613(00)80089-8
  40. Okazaki T., Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol. 2007;19(7):813-24. PMID: 17606980. https://doi.org/10.1093/intimm/dxm057
  41. Topalian S.L., Hodi F.S., Brahmer J.R., Gettinger S.N., Smith D.C., McDermott D.F. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443-54. PMID: 22658127. https://doi.org/10.1056/NEJMoa1200690
  42. Weber J.S., Hodi F.S., Wolchok J.D., Topalian S.L., Schadendorf D., Larkin J., Sznol M., Long G.V., Li H., Waxman I.M., Jiang J., Robert C. Safety profile of nivolumab monotherapy: a pooled analysis of patients with advanced melanoma. J Clin Oncol. 2017;35(7):785-92. PMID: 28068177. https://doi.org/10.1200/JCO.2015.66.1389